GRAY WATER TO GREEN GOLD: CHARACTERIZATION AND POTENTIAL OF POLYHYDROXYALKANOATE-PRODUCING MICROBES FROM INDUSTRIAL EFFLUENTS

Authors

  • R AFRIDI Sarhad Institute of Allied Health Sciences (SUIT) Peshawar, 25000 Peshawar, Pakistan
  • F SHIREEN Sarhad Institute of Allied Health Sciences (SUIT) Peshawar, 25000 Peshawar, Pakistan/Department of Allied Health Sciences, Iqra National University (INU) Peshawar, 25000 Peshawar, Pakistan
  • S KHAN School of Resources and Environmental Engineering, East China University of Science and Technology ,Shanghai, 200237, China
  • S SARDAR Sarhad Institute of Allied Health Sciences (SUIT) Peshawar, 25000 Peshawar, Pakistan
  • SM SHAH Department of Health and Biological Sciences, Abasyn University Peshawar, 25000 Peshawar, Pakistan
  • A BATOOL Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • Q ALI Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • M ASHFAQ Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • A AHMAD Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
  • A ULLAH Department of Allied Health Sciences, Iqra National University (INU) Peshawar, 25000 Peshawar, Pakistan

DOI:

https://doi.org/10.64013/bbasr.v2025i1.105

Keywords:

Industrial wastewater, Polyhydroxyalkanoates (PHA), Serratia nematodiphila, Pseudomonas granadensis, Enterobacter cloacae, 16s RNA

Abstract

Due to high organic load and potential toxicity, the industrial wastewater (WW) poses significant environmental challenges necessitating effective management strategies. The WW presents a unique prospect for bioprocessing such as for the production of polyhydroxyalkanoates (PHAs) due to the presence of microorganisms. This study aimed to isolate and characterize PHA-producing microbes from industrial WW, evaluating their potential for biopolymer synthesis. The collected WW samples were analyzed physiochemically to determine values of parameters like temperature, pH, and concentrations of TDS, BOD and chemical oxygen demand (COD). Results of this research work shows the temperature 40oC, pH =6.2, BOD 3900mg/L, COD 6960m/L and TDS 868mg/L, showing a high number of pollutants adequate for microbial growth. Total of nine strains of bacteria were isolated, among which three strains are recognized as PHA producers that are Serratia nematodiphla, Pseudomonas granadensis and Enterobacter cloacae. These strains were identified through staining techniques and molecular characterization using 16S rRNA sequencing, UV Visible spectroscopy determined characteristics.  A total indicated characteristic absorbance peaks corresponding to PHA, while FTIR analysis identified functional groups indicative of biopolymeric structures. The investigations determined that WW is an efficient substrate for growing PHA producing bacteria, providing sustainable waste management and non-toxic materials. In future researcher should focus on various factors to create an ideal environment for cultivation and increasing the capacity for PHA production. This approach turns waste into valuable products and advancing circular economy.

Downloads

Download data is not yet available.

References

Abdelfattah, A., Ali, S. S., Ramadan, H., El-Aswar, E. I., Eltawab, R., Ho, S. H., & Sun, J. (2022). Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environmental Science and Ecotechnology, 100205. https://doi.org/10.1016/j.ese.2022.100205 DOI: https://doi.org/10.1016/j.ese.2022.100205

Acharjee, S. A., Bharali, P., Gogoi, B., Sorhie, V., Walling, B., &Alemtoshi. (2023). PHA-based bioplastic: A potential alternative to address microplastic pollution. Water, Air, & Soil Pollution, 234(1), 21. https://doi.org/10.1007/s11270-022-06029-2 DOI: https://doi.org/10.1007/s11270-022-06029-2

Al Mamun, A., Prasetya, T. A. E., Dewi, I. R., & Ahmad, M. (2023). Microplastics in human food chains: Food becoming a threat to health safety. Science of The Total Environment, 858, 159834. https://doi.org/10.1016/j.scitotenv.2022.159834 DOI: https://doi.org/10.1016/j.scitotenv.2022.159834

Al Rowaihi, I. S., Paillier, A., Rasul, S., Karan, R., Grötzinger, S. W., Takanabe, K., & Eppinger, J. (2018). Poly (3-hydroxybutyrate) production in an integrated electromicrobial setup: Investigation under stress-inducing conditions. PloS one, 13(4), e0196079. https://doi.org/10.1371/journal.pone.0196079 DOI: https://doi.org/10.1371/journal.pone.0196079

Ali, R., Bashir, K., Ahmad, S., Ullah, A., Shah, S. F., Ali, Q., ...& Ahmad, A. (2023). Bioremediation of Heavy Metals from Industrial Effluents Using Bacillus pakistanensis and Lysinibacilluscomposti. Sustainability, 15(9), 7591. https://doi.org/10.3390/su15097591 DOI: https://doi.org/10.3390/su15097591

Aljuraifani, A. A., Berekaa, M. M., &Ghazwani, A. A. (2019). Bacterial biopolymer (polyhydroxyalkanoate) production from low‐cost sustainable sources. Microbiologyopen, 8(6), e00755. https://doi.org/10.1002/mbo3.755 DOI: https://doi.org/10.1002/mbo3.755

Arumugam, A., & Shereen, M. F. (2020). Bioconversion of Calophyllum inophyllum oilcake for intensification of rhamnolipid and polyhydroxyalkanoates co-production by Enterobacter aerogenes. Bioresource technology, 296, 122321. https://doi.org/10.1016/j.biortech.2019.122321 DOI: https://doi.org/10.1016/j.biortech.2019.122321

Ayaz, T., Khan, S., Khan, A. Z., Lei, M., &Alam, M. (2020). Remediation of industrial wastewater using four hydrophyte species: A comparison of individual (pot experiments) and mix plants (constructed wetland). Journal of environmental management, 255, 109833. https://doi.org/10.1016/j.jenvman.2019.109833 DOI: https://doi.org/10.1016/j.jenvman.2019.109833

Baeza, R., Jarpa, M., & Vidal, G. (2016). Polyhydroxyalkanoate biosynthesis from paper mill wastewater treated by a moving bed biofilm reactor. Water, Air, & Soil Pollution, 227, 1-8. DOI 10.1007/s11270-016-2969-x DOI: https://doi.org/10.1007/s11270-016-2969-x

Basnett, P., Marcello, E., Lukasiewicz, B., Nigmatullin, R., Paxinou, A., Ahmad, M. H., ... & Roy, I. (2020). Antimicrobial materials with lime oil and a poly (3-hydroxyalkanoate) produced via valorisation of sugar cane molasses. Journal of Functional Biomaterials, 11(2), 24. https://doi.org/10.3390/jfb11020024 DOI: https://doi.org/10.3390/jfb11020024

Ben, M., Mato, T., Lopez, A., Vila, M., Kennes, C., & Veiga, M. C. (2011). Bioplastic production using wood mill effluents as feedstock. Water science and technology, 63(6), 1196-1202. https://doi.org/10.2166/wst.2011.358 DOI: https://doi.org/10.2166/wst.2011.358

Bhadra, B., Roy, P., & Chakraborty, R. (2005). Serratia ureilytica sp. nov., a novel urea-utilizing species. International Journal of Systematic and Evolutionary Microbiology, 55(5), 2155-2158. https://doi.org/10.1099/ijs.0.63674-0 DOI: https://doi.org/10.1099/ijs.0.63674-0

Bhattacharyya, A., Pramanik, A., Maji, S. K., Haldar, S., Mukhopadhyay, U. K., & Mukherjee, J. (2012). Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express, 2(1), 1-10. http://www.amb-express.com/content/2/1/34 DOI: https://doi.org/10.1186/2191-0855-2-34

Bhuwal, A. K., Singh, G., Aggarwal, N. K., Goyal, V., & Yadav, A. (2014). Poly-β-hydroxybutyrate production and management of cardboard industry effluent by new Bacillus sp. NA10. Bioresources and Bioprocessing, 1, 1-11.http://www.bioresourcesbioprocessing.com/content/1/1/9 DOI: https://doi.org/10.1186/s40643-014-0009-5

Bhuwal, A. K., Singh, G., Aggarwal, N. K., Goyal, V., & Yadav, A. (2013). Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. International journal of Biomaterials, 2013. https://doi.org/10.1155/2013/752821 DOI: https://doi.org/10.1155/2013/752821

Bose, S. A., Raja, S., Jeyaram, K., Arockiasamy, S., & Velmurugan, S. (2020). investigation of fermentation condition for production enhancement of polyhydroxyalkanoate from cheese whey by pseudomonas SP. Journal of microbiology, biotechnology and Food Sciences, 9(5), 890-898. https://doi.org/10.15414/jmbfs.2020.9.5.890-898 DOI: https://doi.org/10.15414/jmbfs.2020.9.5.890-898

Chavez, B. A., Raghavan, V., &Tartakovsky, B. (2022). A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies. RSC Advances, 12(25), 16105-16118. https://doi.org/10.1039/D1RA08796G DOI: https://doi.org/10.1039/D1RA08796G

Che, L., Jin, W., Zhou, X., Han, W., Chen, Y., Chen, C., & Jiang, G. (2023). Current status and future perspectives on the biological production of polyhydroxyalkanoates. Asia‐Pacific Journal of Chemical Engineering, e2899. https://doi.org/10.1002/apj.2899 DOI: https://doi.org/10.1002/apj.2899

Choi, Y. K., Park, S. J., Park, S., Kim, S., Kern, N. R., Lee, J., &Im, W. (2021). Charmm-GUI polymer builder for modeling and simulation of synthetic polymers. Journal of chemical theory and computation, 17(4), 2431-2443. https://doi.org/10.1021/acs.jctc.1c00169 DOI: https://doi.org/10.1021/acs.jctc.1c00169

Conti, I., Simioni, C., Varano, G., Brenna, C., Costanzi, E., &Neri, L. M. (2021). Legislation to limit the environmental plastic and microplastic pollution and their influence on human exposure. Environmental Pollution, 288, 117708. https://doi.org/10.1016/j.envpol.2021.117708 DOI: https://doi.org/10.1016/j.envpol.2021.117708

De Gisi, S., Gadaleta, G., Gorrasi, G., La Mantia, F. P., Notarnicola, M., &Sorrentino, A. (2022). The role of (bio) degradability on the management of petrochemical and bio-based plastic waste. Journal of Environmental Management, 310, 114769. DOI: https://doi.org/10.1016/j.jenvman.2022.114769

Fagnani, D. E., Tami, J. L., Copley, G., Clemons, M. N., Getzler, Y. D., & McNeil, A. J. (2020). 100th anniversary of macromolecular science viewpoint: redefining sustainable polymers. ACS Macro Letters, 10(1), 41-53. https://dx.doi.org/10.1021/acsmacrolett.0c00789?ref=pdf DOI: https://doi.org/10.1021/acsmacrolett.0c00789

Farid, N., Ullah, A., Khan, S., Butt, S., Khan, A. Z., Afsheen, Z., ...& Ali, Q. (2023). Algae and Hydrophytes as Potential Plants for Bioremediation of Heavy Metals from Industrial Wastewater. Water, 15(12), 2142. https://doi.org/10.3390/w15122142 DOI: https://doi.org/10.3390/w15122142

Feng, Z., Zhao, Z., Liu, Y., Liu, Y., Cao, X., Yu, D. G., & Wang, K. (2023). Piezoelectric Effect Polyvinylidene Fluoride (PVDF): From Energy Harvester to Smart Skin and Electronic Textiles. Advanced Materials Technologies, 2300021. https://doi.org/10.1002/admt.202300021 DOI: https://doi.org/10.1002/admt.202300021

Foreman, S., Ferrara, K., Hreha, T. N., Duran-Pinedo, A. E., Frias-Lopez, J., &Barquera, B. (2021). Genetic and biochemical characterization of the Na+/H+ antiporters of Pseudomonas aeruginosa. Journal of Bacteriology, 203(18), 10-1128. https://doi.org/10.1128/jb.00284-21 DOI: https://doi.org/10.1128/JB.00284-21

Ghribi, M., Meddeb-Mouelhi, F., & Beauregard, M. (2016). Microbial diversity in various types of paper mill sludge: identification of enzyme activities with potential industrial applications. Springerplus, 5(1), 1-14. DOI 10.1186/s40064-016-3147-8 DOI: https://doi.org/10.1186/s40064-016-3147-8

Gupta, A., Kumar, M., & Thakur, I. S. (2017). Analysis and optimization of process parameters for production of polyhydroxyalkanoates along with wastewater treatment by Serratia sp. ISTVKR1. Bioresource technology, 242, 55-59. https://doi.org/10.1016/j.biortech.2017.03.110 DOI: https://doi.org/10.1016/j.biortech.2017.03.110

Hamayoon, M., Ahmad, O., Khan, S., & Nawaz, K. (2024). Comprehensive assessment of fish diversity and water health in river Indus, Khyber Pakhtunkhwa, Pakistan. Environmental Monitoring and Assessment, 196(12), 1221. https://doi.org/10.1007/s10661-024-13409-0 DOI: https://doi.org/10.1007/s10661-024-13409-0

Idris, A. B., Hassan, H. G., Ali, M. A. S., Eltaher, S. M., Idris, L. B., Altayb, H. N., ... & Hassan, M. A. (2020). Molecular phylogenetic analysis of 16S rRNA sequences identified two lineages of helicobacter pylori strains detected from different regions in Sudan suggestive of differential evolution. International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/8825718 DOI: https://doi.org/10.1155/2020/8825718

IJdema, F., De Smet, J., Crauwels, S., Lievens, B., & Van Campenhout, L. (2022). Meta-analysis of larvae of the black soldier fly (Hermetiaillucens) microbiota based on 16S rRNA gene amplicon sequencing. FEMS Microbiology Ecology, 98(9), fiac094. https://doi.org/10.1093/femsec/fiac094 DOI: https://doi.org/10.1093/femsec/fiac094

Jarpa, M., Pozo, G., Baeza, R., Martínez, M., & Vidal, G. (2012). Polyhydroxyalkanoate biosynthesis from paper mill wastewater treated by a moving bed biofilm reactor. Journal of Environmental Science and Health, Part A, 47(13), 2052-2059. https://doi.org/10.1080/10934529.2012.695699 DOI: https://doi.org/10.1080/10934529.2012.695699

Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme research, 2011. https://doi.org/10.4061/2011/805187 DOI: https://doi.org/10.4061/2011/805187

Khan, S., Dilawar, S., Hassan, S., Ullah, A., Yasmin, H., Ayaz, T., & Butt, S. (2023b). Phytoremediation of Cu and Mn from industrially polluted soil: An eco-friendly and sustainable approach. Water, 15(19), 3439. https://doi.org/10.3390/w15193439 DOI: https://doi.org/10.3390/w15193439

Khan, S., Ullah, A., Ayaz, T., Aziz, A., Aman, K., Habib, M., ...& Ali, Q. (2023). Phycoremediation of industrial wastewater using Vaucheriadebaryana and Cladophoraglomerata. Environmental Monitoring and Assessment, 195(7), 825. https://doi.org/10.1007/s10661-023-11357-9 DOI: https://doi.org/10.1007/s10661-023-11357-9

Kucharska-Ambrożej, K., &Karpinska, J. (2020). The application of spectroscopic techniques in combination with chemometrics for detection adulteration of some herbs and spices. Microchemical Journal, 153, 104278. https://doi.org/10.1016/j.microc.2019.104278 DOI: https://doi.org/10.1016/j.microc.2019.104278

Kumar, M., R. Rathour, R. Singh, Y. Sun, A. Pandey, E. Gnansounou, K.Y.A. Lin, D.C.W. Tsang and I.S. Thakur (2020). Bacterial Polyhydroxyalkanoates: Opportunities, Challenges, and Prospects. Journal of Cleaner Production, 263: 121500. https://doi.org/10.1016/j.jclepro.2020.121500 DOI: https://doi.org/10.1016/j.jclepro.2020.121500

Kumar, S. N., Priyam, T., &Aarti, S. (2023). Isolation and Screening of Gram-Positive Polyhydroxyalkanoate producing bacterial strains from Pharmaceutical Industry Effluent. Research Journal of Pharmacy and Technology, 16(1), 373-376. http://dx.doi.org/10.52711/0974-360X.2023.00064 DOI: https://doi.org/10.52711/0974-360X.2023.00064

Kurian, N. S., & Das, B. (2021). Comparative analysis of various extraction processes based on economy, eco-friendly, purity and recovery of polyhydroxyalkanoate: A review. International Journal of Biological Macromolecules, 183, 1881-1890. https://doi.org/10.1016/j.ijbiomac.2021.06.007 DOI: https://doi.org/10.1016/j.ijbiomac.2021.06.007

Maheshwari, N., Kumar, M., Thakur, I. S., & Srivastava, S. (2018). Production, process optimization and molecular characterization of polyhydroxyalkanoate (PHA) by CO2 sequestering B. cereus SS105. Bioresource technology, 254, 75-82. https://doi.org/10.1016/j.biortech.2018.01.002 DOI: https://doi.org/10.1016/j.biortech.2018.01.002

Mahmoodi, M., Afshari, K. P., Seyedabadi, H. R., &Aboozari, M. (2018). Sequence analysis of 12S rRNA and 16S rRNA mitochondrial genes in Iranian Afshari sheep. Banat's Journal of Biotechnology, 9(18). DOI: 10.7904/2068–4738–IX(19)–5 DOI: https://doi.org/10.7904/2068-4738-IX(18)-5

Mandic, M., Spasic, J., Ponjavic, M., Nikolic, M. S., Cosovic, V. R., O'Connor, K. E., ...&Jeremic, S. (2019). Biodegradation of poly (ε-caprolactone)(PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. Polymer Degradation and Stability, 162, 160-168. https://doi.org/10.1016/j.polymdegradstab.2019.02.012 DOI: https://doi.org/10.1016/j.polymdegradstab.2019.02.012

Mannina, G., Presti, D., Montiel-Jarillo, G., & Suárez-Ojeda, M. E. (2019). Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresource technology, 282, 361-369. https://doi.org/10.1016/j.biortech.2019.03.037 DOI: https://doi.org/10.1016/j.biortech.2019.03.037

Marimuthu, S., Karthic, C., Mostafa, A. A., Al-Enazi, N. M., Abdel-Raouf, N., &Sholkamy, E. N. (2020). Antifungal activity of Streptomyces sp. SLR03 against tea fungal plant pathogen Pestalotiopsistheae. Journal of King Saud University-Science, 32(8), 3258-3264. https://doi.org/10.1016/j.jksus.2020.08.027 DOI: https://doi.org/10.1016/j.jksus.2020.08.027

Martínez-Gutiérrez, C. A., Latisnere-Barragán, H., García-Maldonado, J. Q., &López-Cortés, A. (2018). Screening of polyhydroxyalkanoate-producing bacteria and PhaC-encoding genes in two hypersaline microbial mats from Guerrero Negro, Baja California Sur, Mexico. PeerJ, 6, e4780. https://doi.org/10.7717/peerj.4780 DOI: https://doi.org/10.7717/peerj.4780

Muiruri, J.K., J.C.C. Yeo, Q. Zhu, E. Ye, X.J. Loh and Z. Li (2022). Poly (Hydroxyalkanoates): Production, Applications and End-of-Life Strategies–Life Cycle Assessment Nexus. ACS Sustainable Chemistry and Engineering, 10 (11): 3387–406. https://doi.org/10.1021/acssuschemeng.1c08631 DOI: https://doi.org/10.1021/acssuschemeng.1c08631

Munir, S. and N. Jamil (2015). Characterization of Polyhydroxyalkanoates Produced by Contaminated Soil Bacteria Using Wastewater and Glucose as Carbon Sources. Tropical Journal of Pharmaceutical Research, 14 (9): 1605–11. https://doi.org/10.4314/tjpr.v14i9.9 DOI: https://doi.org/10.4314/tjpr.v14i9.9

Ostle, A. G., & Holt, J. G. (1982). Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Applied and environmental microbiology, 44(1), 238-241. https://doi.org/10.1128/aem.44.1.238-241.1982 DOI: https://doi.org/10.1128/aem.44.1.238-241.1982

Pala-Ozkok, I., Zengin, G. E., Taş, D. O., Yağcı, N., Güven, D., Insel, H. G., &Çokgör, E. (2022). Polyhydroxyalkanoate production from food industry residual streams using mixed microbial cultures. In Clean Energy and Resource Recovery (pp. 265-284). Elsevier. https://doi.org/10.1016/B978-0-323-90178-9.00010-X DOI: https://doi.org/10.1016/B978-0-323-90178-9.00010-X

Pan, L., Li, J., Wang, R., Wang, Y., Lin, Q., Li, C., & Wang, Y. (2021). Biosynthesis of polyhydroxyalkanoate from food waste oil by Pseudomonas alcaligenes with simultaneous energy recovery from fermentation wastewater. Waste Management, 131, 268-276. https://doi.org/10.1016/j.wasman.2021.06.008 DOI: https://doi.org/10.1016/j.wasman.2021.06.008

Pan, P., Gu, Y., Sun, D. L., Wu, Q. L., & Zhou, N. Y. (2023). Microbial Diversity Biased Estimation Caused by Intragenomic Heterogeneity and Interspecific Conservation of 16S rRNA Genes. Applied and Environmental Microbiology, e02108-22. https://doi.org/10.1128/aem.02108-22 DOI: https://doi.org/10.1128/aem.02108-22

Panou, A., &Karabagias, I. K. (2023). Biodegradable Packaging Materials for Foods Preservation: Sources, Advantages, Limitations, and Future Perspectives. Coatings, 13(7), 1176. https://doi.org/10.3390/coatings13071176 DOI: https://doi.org/10.3390/coatings13071176

Papadopoulos, K. P., Economou, C. N., Markou, G., Nicodemou, A., Koutinas, M., Tekerlekopoulou, A. G., &Vayenas, D. V. (2022). Cultivation of Arthrospiraplatensis in Brewery Wastewater. Water, 14(10), 1547. https://doi.org/10.3390/w14101547 DOI: https://doi.org/10.3390/w14101547

Pervaiz, M., & Yasmin, A. (2022). Production, Optimization and Characterization of Serratia nematodiphila MB307 to Synthesize Polyhydroxybutyrate Using Wastewater in Submerged Fermentation. International Journal of Environmental Research, 16(6), 109. https://doi.org/10.1007/s41742-022-00487-6 DOI: https://doi.org/10.1007/s41742-022-00487-6

Preka, R., Fiorentino, G., De Carolis, R., &Barberio, G. (2022). The challenge of plastics in a circular perspective. Frontiers in Sustainable Cities, 4, 920242. https://doi.org/10.3389/frsc.2022.920242 DOI: https://doi.org/10.3389/frsc.2022.920242

Priya, A. K., Jalil, A. A., Vadivel, S., Dutta, K., Rajendran, S., Fujii, M., & Soto-Moscoso, M. (2022). Heavy metal remediation from wastewater using microalgae: Recent advances and future trends. Chemosphere, 305, 135375. https://doi.org/10.1016/j.chemosphere.2022.135375 DOI: https://doi.org/10.1016/j.chemosphere.2022.135375

Putatunda, C., Behl, M., Solanki, P., Sharma, S., Bhatia, S. K., Walia, A., & Bhatia, R. K. (2022). Current challenges and future technology in photofermentation-driven biohydrogen production by utilizing algae and bacteria. International Journal of Hydrogen Energy. DOI: https://doi.org/10.1016/j.ijhydene.2022.10.042

Rakkan, T., Chana, N., & Sangkharak, K. (2022). The Integration of textile wastewater treatment with polyhydroxyalkanoate production using newly isolated Enterobacter strain TS3. Waste and Biomass Valorization, 13(1), 571-582. DOI: https://doi.org/10.1007/s12649-021-01504-z

Lam, W., Wang, Y., Chan, P. L., Chan, S. W., Tsang, Y. F., Chua, H., & Yu, P. H. F. (2017). Production of polyhydroxyalkanoates (PHA) using sludge from different wastewater treatment processes and the potential for medical and pharmaceutical applications. Environmental Technology, 38(13-14), 1779-1791. DOI: https://doi.org/10.1080/09593330.2017.1316316

Ratnaningrum, D., Saraswaty, V., Priatni, S., Lisdiyanti, P., Purnomo, A., &Pudjiraharti, S. (2019, May). Screening of polyhydroxyalkanoates (PHA)-producing bacteria from soil bacteria strains. In IOP Conference Series: Earth and Environmental Science, 277: 012003). IOP Publishing. doi:10.1088/1755-1315/277/1/012003 DOI: https://doi.org/10.1088/1755-1315/277/1/012003

Rawat, S., &Goswami, S. (2023). In-silico analysis of a halophilic bacterial isolate-Bacillus pseudomycoides SAS-B1 and its polyhydroxybutyrate production through fed-batch approach under differential salt conditions. International Journal of Biological Macromolecules, 229, 372-387. https://doi.org/10.1016/j.ijbiomac.2022.12.190 DOI: https://doi.org/10.1016/j.ijbiomac.2022.12.190

Rehakova, V., Pernicova, I., Kourilova, X., Sedlacek, P., Musilova, J., Sedlar, K., & Obruca, S. (2023). Biosynthesis of versatile PHA copolymers by thermophilic members of the genus Aneurinibacillus. International Journal of Biological Macromolecules, 225, 1588-1598. https://doi.org/10.1016/j.ijbiomac.2022.11.215 DOI: https://doi.org/10.1016/j.ijbiomac.2022.11.215

Ryan, W. J., O'Leary, N. D., O'Mahony, M., & Dobson, A. D. (2013). GacS-dependent regulation of polyhydroxyalkanoate synthesis in Pseudomonas putida CA-3. Applied and environmental microbiology, 79(6), 1795-1802. https://doi.org/10.1128/AEM.02962-12 DOI: https://doi.org/10.1128/AEM.02962-12

Saravanan, K., Umesh, M., &Kathirvel, P. (2022). Microbial Polyhydroxyalkanoates (PHAs): a review on biosynthesis, properties, fermentation strategies and its prospective applications for sustainable future. Journal of Polymers and the Environment, 30(12), 4903-4935. https://doi.org/10.1007/s10924-022-02562-7 DOI: https://doi.org/10.1007/s10924-022-02562-7

Schlegel, H. G., Lafferty, R., & Krauss, I. (1970). The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Archivfürmikrobiologie, 71, 283-294. DOI: https://doi.org/10.1007/BF00410161

Sennakesavan, G., Mostakhdemin, M., Dkhar, L. K., Seyfoddin, A., &Fatihhi, S. J. (2020). Acrylic acid/acrylamide based hydrogels and its properties-A review. Polymer Degradation and Stability, 180, 109308. https://doi.org/10.1016/j.polymdegradstab.2020.109308 DOI: https://doi.org/10.1016/j.polymdegradstab.2020.109308

Senthilkumar, P., Dawn, S. S., Samanvitha, K. S., Kumar, S. S., Kumar, G. N., & Samrot, A. V. (2017). Optimization and characterization of poly [R] hydroxyalkanoate of Pseudomonas aeruginosa SU-1 to utilize in nanoparticle synthesis for curcumin delivery. Biocatalysis and Agricultural Biotechnology, 12, 292-298. https://doi.org/10.1016/j.bcab.2017.10.019

Senthilkumar, P., Dawn, S. S., Samanvitha, K. S., Kumar, S. S., Kumar, G. N., & Samrot, A. V. (2017). Optimization and characterization of poly [R] hydroxyalkanoate of Pseudomonas aeruginosa SU-1 to utilize in nanoparticle synthesis for curcumin delivery. Biocatalysis and Agricultural Biotechnology, 12, 292-298. https://doi.org/10.1016/j.bcab.2017.10.019 DOI: https://doi.org/10.1016/j.bcab.2017.10.019

Sinaei, N., Zare, D., & Azin, M. (2021). Production and characterization of poly 3-hydroxybutyrate-co-3-hydroxyvalerate in wheat starch wastewater and its potential for nanoparticle synthesis. Brazilian Journal of Microbiology, 52, 561-573. https://doi.org/10.1007/s42770-021-00430-5 DOI: https://doi.org/10.1007/s42770-021-00430-5

Singh, G., Kumari, A., Mittal, A., Yadav, A., & Aggarwal, N. K. (2013). Poly β-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water. BioMedResearch International 2013: 952641. DOI: https://doi.org/10.1155/2013/952641

Song, L., Wang, M., Yu, D., Li, Y., Yu, H., & Han, X. (2023). Enhancing Production of Medium-Chain-Length Polyhydroxyalkanoates from Pseudomonas sp. SG4502 by tac Enhancer Insertion. Polymers, 15(10), 2290. https://doi.org/10.3390/polym15102290 DOI: https://doi.org/10.3390/polym15102290

Spiekermann, P., Rehm, B. H., Kalscheuer, R., Baumeister, D., &Steinbüchel, A. (1999). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Archives of Microbiology, 171, 73-80. DOI: https://doi.org/10.1007/s002030050681

Tanikkul, P., Sullivan, G. L., Sarp, S., &Pisutpaisal, N. (2020). Biosynthesis of medium chain length polyhydroxyalkanoates (mcl-PHAs) from palm oil. Case Studies in Chemical and Environmental Engineering, 2, 100045. https://doi.org/10.1016/j.cscee.2020.100045 DOI: https://doi.org/10.1016/j.cscee.2020.100045

Toczyłowska-Mamińska, R. (2017). Limits and perspectives of pulp and paper industry wastewater treatment–A review. Renewable and Sustainable Energy Reviews, 78, 764-772. https://doi.org/10.1016/j.rser.2017.05.021 DOI: https://doi.org/10.1016/j.rser.2017.05.021

Tyagi, P., & Sharma, A. (2021). Utilization of crude paper industry effluent for Polyhydroxyalkanoate (PHA) production. Environmental Technology & Innovation, 23, 101692. https://doi.org/10.1016/j.eti.2021.101692 DOI: https://doi.org/10.1016/j.eti.2021.101692

Umesh, M., Priyanka, K., Thazeem, B., & Preethi, K. (2018). Biogenic PHA nanoparticle synthesis and characterization from Bacillus subtilis NCDC0671 using orange peel medium. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(17), 996-1004. https://doi.org/10.1080/00914037.2017.1417284 DOI: https://doi.org/10.1080/00914037.2017.1417284

Urbanek, A. K., Mirończuk, A. M., García-Martín, A., Saborido, A., de la Mata, I., & Arroyo, M. (2020). Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. BiochimicaetBiophysicaActa (BBA)-Proteins and Proteomics, 1868(2), 140315. https://doi.org/10.1016/j.bbapap.2019.140315 DOI: https://doi.org/10.1016/j.bbapap.2019.140315

Valdez-Calderón, A., Barraza-Salas, M., Quezada-Cruz, M., Islas-Ponce, M. A., Angeles-Padilla, A. F., Carrillo-Ibarra, S., & Rivas-Castillo, A. M. (2022). Production of polyhydroxybutyrate (PHB) by a novel Klebsiella pneumoniae strain using low-cost media from fruit peel residues. Biomass Conversion and Biorefinery, 12(11), 4925-4938. https://doi.org/10.1007/s13399-020-01147-5 DOI: https://doi.org/10.1007/s13399-020-01147-5

Vicente, D., D.N. Proença and P.V. Morais (2023). The Role of Bacterial Polyhydroalkanoate (Pha) in a Sustainable Future: A Review on the Biological Diversity. International Journal of Environmental Research and Public Health, 20 (4): 2959. https://doi.org/10.3390/ijerph20042959 DOI: https://doi.org/10.3390/ijerph20042959

Vigneswari, S., M.S.M. Noor, T.S.M. Amelia, K. Balakrishnan, A. Adnan, K. Bhubalan, A.A.A. Amirul and S. Ramakrishna (2021). Recent Advances in the Biosynthesis of Polyhydroxyalkanoates from Lignocellulosic Feedstocks. Life, 11 (8): 807. https://doi.org/10.3390/life11080807 DOI: https://doi.org/10.3390/life11080807

Wahyuni, I. R., Fathar, I. R., &Junitasari, A. (2023, April). Performance of food industry wastewater treatment plant (WWTP) by combining anaerobic, aerobic, and ozonation process. In AIP Conference Proceedings, 2646: 1. AIP Publishing. https://doi.org/10.1063/5.0114469 DOI: https://doi.org/10.1063/5.0114469

Wan, W., He, D., & Xue, Z. (2017). Removal of nitrogen and phosphorus by heterotrophic nitrification-aerobic denitrification of a denitrifying phosphorus-accumulating bacterium Enterobacter cloacae HW-15. Ecological Engineering, 99, 199-208. https://doi.org/10.1016/j.ecoleng.2016.11.030 DOI: https://doi.org/10.1016/j.ecoleng.2016.11.030

Wojnowska-Baryła, I., Bernat, K., &Zaborowska, M. (2022). Plastic waste degradation in landfill conditions: the problem with microplastics, and their direct and indirect environmental effects. International Journal of Environmental Research and Public Health, 19(20), 13223. https://doi.org/10.3390/ijerph192013223 DOI: https://doi.org/10.3390/ijerph192013223

Zhang, D., Liu, Y., Han, Y., Zhang, Y., Jia, X., Li, W., & Jing, L. (2021). Nitrate removal from low C/N wastewater at low temperature by immobilized Pseudomonas sp. Y39-6 with versatile nitrate metabolism pathways. Bioresource Technology, 326, 124794. https://doi.org/10.1016/j.biortech.2021.124794 DOI: https://doi.org/10.1016/j.biortech.2021.124794

Zittis, G., Almazroui, M., Alpert, P., Ciais, P., Cramer, W., Dahdal, Y., & Lelieveld, J. (2022). Climate change and weather extremes in the Eastern Mediterranean and Middle East. Reviews of Geophysics, 60(3), e2021RG000762. https://doi.org/10.1029/2021RG000762 DOI: https://doi.org/10.1029/2021RG000762

Downloads

Published

2025-08-07

How to Cite

AFRIDI, R., SHIREEN, F., KHAN, S., SARDAR, S., SHAH, S., BATOOL, A., ALI, Q., ASHFAQ, M., AHMAD, A., & ULLAH, A. (2025). GRAY WATER TO GREEN GOLD: CHARACTERIZATION AND POTENTIAL OF POLYHYDROXYALKANOATE-PRODUCING MICROBES FROM INDUSTRIAL EFFLUENTS. Bulletin of Biological and Allied Sciences Research, 2025(1), 105. https://doi.org/10.64013/bbasr.v2025i1.105

Most read articles by the same author(s)

1 2 3 4 > >>