ROLE OF MODERN BIOTECHNOLOGY IN IMPROVING CROP PROTECTION

Authors

  • J AKRAM Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • N NAEEM Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • MT MANZOOR Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • Q ALI Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • UA MARWAT Medicinal Botanic Center, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Peshawar, 25120, Pakistan
  • T ZIA Cell development and Microbiology, Department of biological Sciences, Ohio University, Athens OH, United States of America

DOI:

https://doi.org/10.54112/bbasr.v2025i1.100

Keywords:

CRISPR-Cas9, genetically modified crops, IPM strategies, biotic, abiotic, SNPs

Abstract

Biotechnology plays a transformative role in enhancing agricultural productivity and crop protection by integrating cutting-edge genetic tools, including genetic engineering, marker-assisted selection, and molecular diagnostics. These have led to the development of genetically modified crops (GMOs) and improved pest, disease, and abiotic stress resistance through gene editing techniques like CRISPR-Cas9. Besides that, innovations in bioinformatics and simulation modeling have optimized farming techniques, including residual harvesting, without causing detrimental environmental impacts like the emission of greenhouse gases and soil degradation. Residual harvesting has shown significant impacts on crop yield and soil health. Research shows that with accurate residue management, it is possible to enhance the fertility of the soil and the performance of crops while reducing carbon emissions and soil erosion. Molecular markers, such as SNPs and AFLPs, are instrumental in fast-tracking the breeding programs to produce varieties that are tolerant of biotic and abiotic stresses so that resilient crop varieties may be produced. Biotechnology applications, such as precision breeding, have transformed agriculture by introducing traits that include drought and heat tolerance, nutrient efficiency, and enhanced yields. Successful case studies, such as Bt cotton, golden rice, and blight-resistant potatoes, are illustrative of the potential biotechnology has to solve challenges in global food security. The IPM strategies, grounded in biotechnological breakthroughs, have reduced the usage of chemical inputs, therefore promoting sustainable farming practices. This multidimensional approach underscores biotechnology's role in addressing the challenges of a growing global population, ensuring food security, and fostering sustainable agricultural development. Through the merging of traditional practices with modern genetic tools, biotechnology presents a pathway toward resilient, high-yielding, and environmentally sustainable agricultural systems.

Downloads

Download data is not yet available.

References

Akram, J., Haider, M. Z., Shafiq, M., Sami, A., Manzoor, M. T., Ali, S., Haider, M. S., Shahid, M. A., and Siddique, R. (2024). Cell Signaling Response Under Plants Stress. In "Molecular Dynamics of Plant Stress and its Management", pp. 447-474. Springe.( https://doi.org/10.1007/978-981-97-1699-9_20) DOI: https://doi.org/10.1007/978-981-97-1699-9_20

Akram, J., Siddique, R., Shafiq, M., Tabassum, B., Manzoor, M. T., Javed, M. A., Anwar, S., Nisa, B. U., Saleem, M. H., and Javed, B. (2023). Genome-wide identification of CCO gene family in cucumber (Cucumis sativus) and its comparative analysis with A. thaliana. BMC Plant Biology 23, 640. https://doi.org/10.1186/s12870-023-04647-4 DOI: https://doi.org/10.1186/s12870-023-04647-4

Anand, S. (2017). The role of science, technology and innovation in ensuring food security by 2030.

Anwar, S., Siddique, R., Ahmad, S., Haider, M. Z., Ali, H., Sami, A., Lucas, R. S., Shafiq, M., Nisa, B. U., and Javed, B. (2024). Genome wide identification and characterization of Bax inhibitor-1 gene family in cucumber (Cucumis sativus) under biotic and abiotic stress. BMC genomics 25, 1032. https://doi.org/10.1186/s12864-024-10704-5 DOI: https://doi.org/10.1186/s12864-024-10704-5

Bhatia, S., Bera, T., Dahiya, R., Bera, T., Bhatia, S., and Bera, T. (2015). Classical and nonclassical techniques for secondary metabolite production in plant cell culture. Modern applications of plant biotechnology in pharmaceutical sciences, 231-291. DOI: https://doi.org/10.1016/B978-0-12-802221-4.00007-8

Bhattacharjee, M., Meshram, S., Dayma, J., Pandey, N., Abdallah, N., Hamwieh, A., Fouad, N., and Acharjee, S. (2024). Genetic Engineering: A Powerful Tool for Crop Improvement. In "Frontier Technologies for Crop Improvement", pp. 223-258. Springer. https://doi.org/10.1007/978-981-99-4673-0_10 DOI: https://doi.org/10.1007/978-981-99-4673-0_10

Clasen, B. M., Stoddard, T. J., Luo, S., Demorest, Z. L., Li, J., Cedrone, F., Tibebu, R., Davison, S., Ray, E. E., and Daulhac, A. (2016). Improving cold storage and processing traits in potato through targeted gene knockout. Plant biotechnology journal 14, 169-176. https://doi.org/10.1111/pbi.12370 DOI: https://doi.org/10.1111/pbi.12370

Éva, C., Téglás, F., Zelenyánszki, H., Tamás, C., Juhász, A., Mészáros, K., and Tamás, L. (2018). Cold inducible promoter driven Cre-lox system proved to be highly efficient for marker gene excision in transgenic barley. Journal of biotechnology 265, 15-24. https://doi.org/10.1016/j.jbiotec.2017.10.016 DOI: https://doi.org/10.1016/j.jbiotec.2017.10.016

Guo, Y., Zhao, G., Gao, X., Zhang, L., Zhang, Y., Cai, X., Yuan, X., and Guo, X. (2023). CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement. Planta 258, 36. https://doi.org/10.1007/s00425-023-04187-z DOI: https://doi.org/10.1007/s00425-023-04187-z

Hahn, F., Korolev, A., Sanjurjo Loures, L., and Nekrasov, V. (2020). A modular cloning toolkit for genome editing in plants. BMC plant biology 20, 1-10. https://doi.org/10.1186/s12870-020-02388-2 DOI: https://doi.org/10.1186/s12870-020-02388-2

Kang, M. S. (2024). "Crop improvement: challenges in the twenty-first century," CRC Press. DOI: https://doi.org/10.1201/9781003578512

Lassoued, R., Phillips, P. W., Smyth, S. J., and Hesseln, H. (2019). Estimating the cost of regulating genome edited crops: expert judgment and overconfidence. GM Crops & Food 10, 44-62. DOI: 10.1080/21645698.2019.1612689 DOI: https://doi.org/10.1080/21645698.2019.1612689

Macedo, M. L. R., Oliveira, C. F., and Oliveira, C. T. (2015). Insecticidal activity of plant lectins and potential application in crop protection. Molecules 20, 2014-2033. DOI: 10.3390/molecules20022014 DOI: https://doi.org/10.3390/molecules20022014

McCarty, N. S., Graham, A. E., Studená, L., and Ledesma-Amaro, R. (2020). Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nature communications 11, 1281. DOI: 10.1038/s41467-020-15053-x DOI: https://doi.org/10.1038/s41467-020-15053-x

Osendarp, S., Akuoku, J. K., Black, R. E., Headey, D., Ruel, M., Scott, N., Shekar, M., Walker, N., Flory, A., and Haddad, L. (2021). The COVID-19 crisis will exacerbate maternal and child undernutrition and child mortality in low-and middle-income countries. Nature food 2, 476-484. DOI: 10.1038/s43016-021-00319-4 DOI: https://doi.org/10.1038/s43016-021-00319-4

Paril, J., Reif, J., Fournier‐Level, A., and Pourkheirandish, M. (2024). Heterosis in crop improvement. The Plant Journal 117, 23-32. DOI: 10.1111/tpj.15870 DOI: https://doi.org/10.1111/tpj.16488

Parmar, N., Singh, K. H., Sharma, D., Singh, L., Kumar, P., Nanjundan, J., Khan, Y. J., Chauhan, D. K., and Thakur, A. K. (2017). Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech 7, 1-35. DOI: 10.1007/s13205-017-0752-1 DOI: https://doi.org/10.1007/s13205-017-0870-y

Permyakova, N. V., and Deineko, E. V. (2024). Crop Improvement: Comparison of Transgenesis and Gene Editing. Horticulturae 10, 57. DOI: 10.3390/horticulturae10010057 DOI: https://doi.org/10.3390/horticulturae10010057

Pucker, B., Kleinbölting, N., and Weisshaar, B. (2021). Large scale genomic rearrangements in selected Arabidopsis thaliana T-DNA lines are caused by T-DNA insertion mutagenesis. BMC genomics 22, 1-21. DOI: 10.1186/s12864-021-07454-8 DOI: https://doi.org/10.1186/s12864-021-07877-8

Rajyaguru, R., Maheshala, N., and K, G. (2024). Genetic improvement in peanut: role of Genetic Engineering. In "Genetic Engineering of Crop Plants for Food and Health Security: Volume 1", pp. 271-288. Springer. DOI: https://doi.org/10.1007/978-981-99-5034-8_13

Römer, P., Hahn, S., Jordan, T., Strauss, T., Bonas, U., and Lahaye, T. (2007). Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318, 645-648. DOI: 10.1126/science.1144958 DOI: https://doi.org/10.1126/science.1144958

Rozov, S. M., Permyakova, N. V., and Deineko, E. V. (2019). The problem of the low rates of CRISPR/Cas9-mediated knock-ins in plants: approaches and solutions. International journal of molecular sciences 20, 3371. DOI: 10.3390/ijms20133371 DOI: https://doi.org/10.3390/ijms20133371

Schreiber, M., Jayakodi, M., Stein, N., and Mascher, M. (2024). Plant pangenomes for crop improvement, biodiversity and evolution. Nature Reviews Genetics, 1-15. DOI: 10.1038/s41576-024-00415-9 DOI: https://doi.org/10.1038/s41576-024-00691-4

Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., Teramura, H., Yamamoto, T., Komatsu, H., and Miura, K. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature biotechnology 35, 441-443. DOI: 10.1038/nbt.3833 DOI: https://doi.org/10.1038/nbt.3833

Singh, M., Kumar, J., Singh, S., Singh, V. P., and Prasad, S. M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in environmental science and bio/technology 14, 407-426. DOI: 10.1007/s11157-015-9372-8 DOI: https://doi.org/10.1007/s11157-015-9372-8

Subramanyam, K., Sailaja, K., Subramanyam, K., Muralidhara Rao, D., and Lakshmidevi, K. (2011). Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell, Tissue and Organ Culture (PCTOC) 105, 181-192. DOI: 10.1007/s11240-010-9851-2 DOI: https://doi.org/10.1007/s11240-010-9850-1

Xiong, X., Liang, J., Li, Z., Gong, B. Q., and Li, J. F. (2021). Multiplex and optimization of dCas9‐TV‐mediated gene activation in plants. Journal of Integrative Plant Biology 63, 634-645. DOI: 10.1111/jipb.13039 DOI: https://doi.org/10.1111/jipb.13023

Yadav, A. S., Sinha, S., and Masurkar, P. (2024). New advancements in genetic improvement of cash crop sugarcane. In "Genetic Engineering of Crop Plants for Food and Health Security: Volume 1", pp. 393-406. Springer. DOI: https://doi.org/10.1007/978-981-99-5034-8_19

Zhao, Y., Kim, J. Y., Karan, R., Jung, J. H., Pathak, B., Williamson, B., Kannan, B., Wang, D., Fan, C., and Yu, W. (2019). Generation of a selectable marker free, highly expressed single copy locus as landing pad for transgene stacking in sugarcane. Plant molecular biology 100, 247-263. DOI: 10.1007/s11103-019-00860-8 DOI: https://doi.org/10.1007/s11103-019-00856-4

Downloads

Published

2025-03-20

How to Cite

AKRAM, J., NAEEM, N., MANZOOR, M., ALI, Q., MARWAT, U., & ZIA, T. (2025). ROLE OF MODERN BIOTECHNOLOGY IN IMPROVING CROP PROTECTION. Bulletin of Biological and Allied Sciences Research, 2025(1), 100. https://doi.org/10.54112/bbasr.v2025i1.100

Most read articles by the same author(s)

1 2 > >>