• S NAEEM Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • A SAMI Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • MZ HAIDER Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • MH ALI Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • A KHALIQ Department of Food Sciences, Faculty of Agricultural Sciences, University of Punjab, P.O BOX 54590, Lahore, Pakistan
  • MI AKRAM Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX 54590, Lahore, Pakistan
  • M MUDASAR Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX 54590, Lahore, Pakistan
  • Q ALI Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • MD JUNAID Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye




citrus, rootstocks, heat stress, abiotic, antioxidant, citriculture, scion


Misfortunes caused by high temperatures compel us to more readily comprehend the physiological, hormonal, and sub-atomic systems of reactions, particularly in humid and subhumid yields such as citrus organic products that are accustomed to specific conditions. Heat stress is accustomed to drought and many other environmental factors affecting Citriculture. We observe the role of Rubisco, antioxidant enzymes, HSPs, physiological changes in plasma membranes, and the role of ABA and SA under heat stress in citrus. Not-with-standing essential exploration, developing and utilizing new and well-developed citrus rootstocks is an essential element for the regulation, according to ecological circumstances. Rootstocks are essential in controlling how plants react to changing environmental factors, such as heat stress. They transfer beneficial features and increase stress tolerance, which helps citrus plants be more resilient overall. The duration of growth, yield, fruit quality, and tolerance to biotic and abiotic challenges are only a few of the characteristics of citrus horticulture that can be significantly improved using the right rootstocks. Enhancing citrus fruits' resistance to unfavorable environmental circumstances is urgently needed due to climate change. We can learn more about how different rootstocks affect the scion's capacity to withstand abiotic pressures by examining the metabolic responses caused by those rootstocks. Because of its increased antioxidant capacity, improved stomatal control, and storage of protective proteins, Carrizo citrange, for instance, demonstrates superior resilience to heat stress when compared to Cleopatra mandarin. The combined impacts of heat and drought on citrus vegetation differ from the effects of each stress alone. Specific metabolic changes are occur, which agree with findings from other plant research looking at the combined impacts of stress on physiology, transcriptome, proteome, and metabolome. When using rootstocks like Sunki Maravilha mandarin under drought stress, important metabolites such as galactinol, raffinose, and SA can be enhanced in scions through grafting. On the other hand, the Cleopatra rootstock alters the metabolism of the scion, resulting in lower quantities of the amino acids galactinol, raffinose, proline, phenylalanine, and tryptophan, which could lead to undesired characteristics. These results highlight the value of continued research to solve the problems brought on by climate change and provide light on the role of rootstocks in citriculture.


Albacete, A., Martínez-Andújar, C., Martínez-Pérez, A., Thompson, A. J., Dodd, I. C., & Pérez-Alfocea, F. (2015). Unravelling rootstock× scion interactions to improve food security. Journal of experimental botany, 66(8), 2211-2226. (https://doi.org/10.1093/jxb/erv027) DOI: https://doi.org/10.1093/jxb/erv027

Albrecht, U., McCollum, G., & Bowman, K. D. (2012). Influence of rootstock variety on Huanglongbing disease development in field-grown sweet orange (Citrus sinensis [L.] Osbeck) trees. Scientia Horticulturae, 138, 210-220. (https://doi.org/10.1016/j.scienta.2012.02.027) DOI: https://doi.org/10.1016/j.scienta.2012.02.027

Allakhverdiev, S. I., Kreslavski, V. D., Klimov, V. V., Los, D. A., Carpentier, R., & Mohanty, P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis research, 98, 541-550. (https://doi.org/10.1007/s11120-008-9331-0) DOI: https://doi.org/10.1007/s11120-008-9331-0

Allakhverdiev, S. I., Los, D. A., Mohanty, P., Nishiyama, Y., & Murata, N. (2007). Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(12), 1363-1371. (https://doi.org/10.1016/j.bbabio.2007.10.005) DOI: https://doi.org/10.1016/j.bbabio.2007.10.005

Allakhverdiev, S. I., Nishiyama, Y., Takahashi, S., Miyairi, S., Suzuki, I., & Murata, N. (2005). Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem II in Synechocystis. Plant physiology, 137(1), 263-273. (https://doi.org/10.1104/pp.104.054478) DOI: https://doi.org/10.1104/pp.104.054478

Aminaka, R., Taira, Y., Kashino, Y., Koike, H., & Satoh, K. (2006). Acclimation to the growth temperature and thermosensitivity of photosystem II in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. Plant and Cell Physiology, 47(12), 1612-1621. (https://doi.org/10.1093/pcp/pcl024) DOI: https://doi.org/10.1093/pcp/pcl024

Ananthakrishnan, G., Ćalović, M., Serrano, P., & Grosser, J. (2006). Production of additional allotetraploid somatic hybrids combining mandarings and sweet orange with pre-selected pummelos as potential candidates to replace sour orange rootstock. In Vitro Cellular & Developmental Biology-Plant, 42, 367-371.( https://doi.org/10.1079/IVP2006784) DOI: https://doi.org/10.1079/IVP2006784

Baldwin, E., Seymour, G., Taylor, J., & Tucker, G. (1993). Biochemistry of fruit ripening. (DOI 10. 1007/978-94-011-1584-1)

Balfagón, D., Rambla, J. L., Granell, A., Arbona, V., & Gomez-Cadenas, A. (2022). Grafting improves tolerance to combined drought and heat stresses by modifying metabolism in citrus scion. Environmental and Experimental Botany, 195, 104793.( https://doi.org/10.1016/j.envexpbot.2022.104793) DOI: https://doi.org/10.1016/j.envexpbot.2022.104793

Balfagón, D., Sengupta, S., Gómez-Cadenas, A., Fritschi, F. B., Azad, R. K., Mittler, R., & Zandalinas, S. I. (2019). Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant physiology, 181(4), 1668-1682. (https://doi.org/10.1104/pp.19.00956) DOI: https://doi.org/10.1104/pp.19.00956

Balfagón, D., Zandalinas, S. I., Baliño, P., Muriach, M., & Gómez-Cadenas, A. (2018). Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures. Plant Physiology and Biochemistry, 127, 194-199. (https://doi.org/10.1016/j.plaphy.2018.03.029) DOI: https://doi.org/10.1016/j.plaphy.2018.03.029

Balint, I., Bhattacharya, J., Perelman, A., Schatz, D., Moskovitz, Y., Keren, N., & Schwarz, R. (2006). Inactivation of the extrinsic subunit of photosystem II, PsbU, in Synechococcus PCC 7942 results in elevated resistance to oxidative stress. FEBS letters, 580(8), 2117-2122. (https://doi.org/10.1016/j.febslet.2006.03.020) DOI: https://doi.org/10.1016/j.febslet.2006.03.020

Bambach, N., & Gilbert, M. E. (2020). A dynamic model of RuBP-regeneration limited photosynthesis accounting for photoinhibition, heat and water stress. Agricultural and Forest Meteorology, 285, 107911. (https://doi.org/10.1016/j.agrformet.2020.107911) DOI: https://doi.org/10.1016/j.agrformet.2020.107911

Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical reviews in plant sciences, 24(1), 23-58. (https://doi.org/10.1080/07352680590910410) DOI: https://doi.org/10.1080/07352680590910410

Barua, D., Downs, C. A., & Heckathorn, S. A. (2003). Variation in chloroplast small heat-shock protein function is a major determinant of variation in thermotolerance of photosynthetic electron transport among ecotypes of Chenopodium album. Functional Plant Biology, 30(10), 1071-1079 (https://doi.org/10.1071/FP03106). DOI: https://doi.org/10.1071/FP03106

Ben-Hayyim, G., & Kochba, J. (1982). Growth characteristics and stability of tolerance of citrus callus cells subjected to NaCl stress. Plant Science Letters, 27(1), 87-94 (https://doi.org/10.1016/0304-4211(82)90075-X). DOI: https://doi.org/10.1016/0304-4211(82)90075-X

Berry, J., & Bjorkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of plant physiology, 31(1), 491-543 (https://doi.org/10.1146/annurev.pp.31.060180.002423). DOI: https://doi.org/10.1146/annurev.pp.31.060180.002423

Biedermannova, L., Riley, K. E., Berka, K., Hobza, P., & Vondrasek, J. (2008). Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane. Physical Chemistry Chemical Physics, 10(42), 6350-6359 (https://doi.org/10.1039/B805087B). DOI: https://doi.org/10.1039/b805087b

Bohnert, H. J., & Jensen, R. G. (1996). Strategies for engineering water-stress tolerance in plants. Trends in biotechnology, 14(3), 89-97 (ttps://doi.org/10.1016/0167-7799(96)80929-2). DOI: https://doi.org/10.1016/0167-7799(96)80929-2

Boursiac, Y., Léran, S., Corratgé-Faillie, C., Gojon, A., Krouk, G., & Lacombe, B. (2013). ABA transport and transporters. Trends in plant science, 18(6), 325-333 (https://doi.org/10.1016/j.tplants.2013.01.007). DOI: https://doi.org/10.1016/j.tplants.2013.01.007

Bukhov, N., & Mohanty, P. (1999). Elevated temperature stress effects on photosystems: characterization and evaluation of the nature of heat induced impairments. Concepts in photobiology: photosynthesis and photomorphogenesis, 617-648 (https://doi.org/10.1007/978-94-011-4832-0_20). DOI: https://doi.org/10.1007/978-94-011-4832-0_20

Carlos de Oliveira, A., Novac Garcia, A., Cristofani, M., & Machado, M. A. (2002). Identification of citrus hybrids through the combination of leaf apex morphology and SSR markers. Euphytica, 128(3), 397-403 (https://doi.org/10.1023/A:1021223309212). DOI: https://doi.org/10.1023/A:1021223309212

Castle, W. S. (2010). A career perspective on citrus rootstocks, their development, and commercialization. HortScience, 45(1), 11-15 (https://doi.org/10.21273/HORTSCI.45.1.11). DOI: https://doi.org/10.21273/HORTSCI.45.1.11

Chakraborty, D., Nagarajan, S., Aggarwal, P., Gupta, V., Tomar, R., Garg, R., Sahoo, R., Sarkar, A., Chopra, U. K., & Sarma, K. S. (2008). Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agricultural water management, 95(12), 1323-1334 (https://doi.org/10.1016/j.agwat.2008.06.001). DOI: https://doi.org/10.1016/j.agwat.2008.06.001

Chakraborty, U., & Pradhan, B. (2012). Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Brazilian Journal of Plant Physiology, 24, 117-130 (https://doi.org/10.1590/S1677-04202012000200005). DOI: https://doi.org/10.1590/S1677-04202012000200005

Chao, X., Yuqing, T., Xincheng, L., Huidong, Y., Yuting, W., Zhongdong, H., Xinlong, H., Buchun, L., & Jing, S. (2022). Exogenous spermidine enhances the photosynthetic and antioxidant capacity of citrus seedlings under high temperature. Plant Signaling & Behavior, 17(1), 2086372 (https://doi.org/10.1080/15592324.2022.2086372). DOI: https://doi.org/10.1080/15592324.2022.2086372

Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M. J., & Jung, R. (2001). Aquaporins constitute a large and highly divergent protein family in maize. Plant physiology, 125(3), 1206-1215 (https://doi.org/10.1104/pp.125.3.1206). DOI: https://doi.org/10.1104/pp.125.3.1206

Chinnusamy, V., Zhu, J., Zhou, T., & Zhu, J.-K. (2007). Small RNAs: big role in abiotic stress tolerance of plants. Advances in molecular breeding toward drought and salt tolerant crops, 223-260 (https://doi.org/10.1007/978-1-4020-5578-2_10). DOI: https://doi.org/10.1007/978-1-4020-5578-2_10

Chung, I. M., Kim, J. J., Lim, J. D., Yu, C. Y., Kim, S. H., & Hahn, S. J. (2006). Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress. Environmental and Experimental Botany, 56(1), 44-53 (https://doi.org/10.1016/j.envexpbot.2005.01.001). DOI: https://doi.org/10.1016/j.envexpbot.2005.01.001

Clarke, S. M., Cristescu, S. M., Miersch, O., Harren, F. J., Wasternack, C., & Mur, L. A. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist, 182(1), 175-187 (https://doi.org/10.1111/j.1469-8137.2008.02735.x). DOI: https://doi.org/10.1111/j.1469-8137.2008.02735.x

Clarke, S. M., Mur, L. A., Wood, J. E., & Scott, I. M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. The Plant Journal, 38(3), 432-447 (https://doi.org/10.1111/j.1365-313X.2004.02054.x). DOI: https://doi.org/10.1111/j.1365-313X.2004.02054.x

De Oliveira, A. (2019). Abiotic and Biotic Stress in Plants. BoD–Books on Demand. DOI: https://doi.org/10.5772/intechopen.77845

De Ollas, C., Arbona, V., Gómez-Cadenas, A., & Dodd, I. C. (2018). Attenuated accumulation of jasmonates modifies stomatal responses to water deficit. Journal of experimental botany, 69(8), 2103-2116 (https://doi.org/10.1093/jxb/ery045). DOI: https://doi.org/10.1093/jxb/ery045

Delauney, A. J., & Verma, D. P. S. (1993). Proline biosynthesis and osmoregulation in plants. The Plant Journal, 4(2), 215-223. DOI: https://doi.org/10.1046/j.1365-313X.1993.04020215.x

Devireddy, A. R., Zandalinas, S. I., Gómez-Cadenas, A., Blumwald, E., & Mittler, R. (2018). Coordinating the overall stomatal response of plants: Rapid leaf-to-leaf communication during light stress. Science Signaling, 11(518), eaam9514 (DOI: 10.1126/scisignal.aam9514). DOI: https://doi.org/10.1126/scisignal.aam9514

Finkelstein, R. (2013). Abscisic acid synthesis and response. The Arabidopsis book/American society of plant biologists, 11 (doi: 10.1199/tab.0166). DOI: https://doi.org/10.1199/tab.0166

Forner-Giner, M. A., Primo-Millo, E., & Forner, J. B. (2009). Performance of Forner-Alcaide 5 and Forner-Alcaide 13, hybrids of Cleopatra mandarin x Poncirus trifoliate, as salinity-tolerant citrus rootstocks. Journal of the American Pomological Society, 63(2), 72.

Gupta, A. B., & Sankararamakrishnan, R. (2009). Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC plant biology, 9, 1-28 (https://doi.org/10.1186/1471-2229-9-134). DOI: https://doi.org/10.1186/1471-2229-9-134

Han, Q., Guo, Q., Korpelainen, H., Niinemets, Ü., & Li, C. (2019). Rootstock determines the drought resistance of poplar grafting combinations. Tree Physiology, 39(11), 1855-1866 (https://doi.org/10.1093/treephys/tpz102). DOI: https://doi.org/10.1093/treephys/tpz102

Hasanuzzaman, M., Hossain, M. A., da Silva, J. A. T., & Fujita, M. (2012). Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. Crop stress and its management: perspectives and strategies, 261-315 (https://doi.org/10.1007/978-94-007-2220-0_8). DOI: https://doi.org/10.1007/978-94-007-2220-0_8

Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signaling & Behavior, 7(11), 1456-1466 (https://doi.org/10.4161/psb.21949). DOI: https://doi.org/10.4161/psb.21949

Heckathorn, S. A., Ryan, S. L., Baylis, J. A., Wang, D., Hamilton III, E. W., Cundiff, L., & Luthe, D. S. (2002). In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem II during heat stress. Functional Plant Biology, 29(8), 935-946 (https://doi.org/10.1071/PP01191). DOI: https://doi.org/10.1071/PP01191

Horváth, I., Glatz, A., Varvasovszki, V., Török, Z., Páli, T., Balogh, G., Kovács, E., Nádasdi, L., Benkö, S., & Joó, F. (1998). Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proceedings of the National Academy of Sciences, 95(7), 3513-3518 (https://doi.org/10.1073/pnas.95.7.3513). DOI: https://doi.org/10.1073/pnas.95.7.3513

Janská, A., Maršík, P., Zelenková, S., & Ovesná, J. (2010). Cold stress and acclimation–what is important for metabolic adjustment? Plant Biology, 12(3), 395-405 ( https://doi.org/10.1111/j.14388677.2009.00299.x). DOI: https://doi.org/10.1111/j.1438-8677.2009.00299.x

Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjovall, S., Fraysse, L., Weig, A. R., & Kjellbom, P. (2001). The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant physiology, 126(4), 1358-1369 (https://doi.org/10.1104/pp.126.4.1358). DOI: https://doi.org/10.1104/pp.126.4.1358

Kazan, K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in plant science, 20(4), 219-229 (DOI:https://doi.org/10.1016/j.tplants.2015.02.001). DOI: https://doi.org/10.1016/j.tplants.2015.02.001

Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6, 462 (https://doi.org/10.3389/fpls.2015.00462). DOI: https://doi.org/10.3389/fpls.2015.00462

Khan, M. S., Ahmad, D., & Khan, M. A. (2015). Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electronic Journal of Biotechnology, 18(4), 257-266 (https://doi.org/10.1016/j.ejbt.2015.04.002). DOI: https://doi.org/10.1016/j.ejbt.2015.04.002

Khan, M. S., & Khan, I. A. (2021). Citrus: Research, Development and Biotechnology. BoD–Books on Demand.

Kim, M., Canio, W., Kessler, S., & Sinha, N. (2001). Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science, 293(5528), 287-289 (DOI: 10.1126/science.1059805). DOI: https://doi.org/10.1126/science.1059805

Kishor, P. K., Hong, Z., Miao, G.-H., Hu, C.-A. A., & Verma, D. P. S. (1995). Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant physiology, 108(4), 1387-1394 (https://doi.org/10.1104/pp.108.4.1387). DOI: https://doi.org/10.1104/pp.108.4.1387

Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of experimental botany, 63(4), 1593-1608 (https://doi.org/10.1093/jxb/err460). DOI: https://doi.org/10.1093/jxb/err460

Kreslavski, V., Tatarinzev, N., Shabnova, N., Semenova, G., & Kosobryukhov, A. (2008). Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities. Journal of plant physiology, 165(15), 1592-1600 (https://doi.org/10.1016/j.jplph.2007.12.011). DOI: https://doi.org/10.1016/j.jplph.2007.12.011

Krieger-Liszkay, A. (2005). Singlet oxygen production in photosynthesis. Journal of experimental botany, 56(411), 337-346 (https://doi.org/10.1093/jxb/erh237). DOI: https://doi.org/10.1093/jxb/erh237

Kudo, H., & Harada, T. (2007). A graft-transmissible RNA from tomato rootstock changes leaf morphology of potato scion. HortScience, 42(2), 225-226 (https://doi.org/10.21273/HORTSCI.42.2.225). DOI: https://doi.org/10.21273/HORTSCI.42.2.225

Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant physiology, 138(2), 882-897 (https://doi.org/10.1104/pp.105.062257). DOI: https://doi.org/10.1104/pp.105.062257

Larkindale, J., & Huang, B. (2005). Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regulation, 47, 17-28 (https://doi.org/10.1007/s10725-005-1536-z). DOI: https://doi.org/10.1007/s10725-005-1536-z

Li, X., Yang, Y., Sun, X., Lin, H., Chen, J., Ren, J., Hu, X., & Yang, Y. (2014). Comparative physiological and proteomic analyses of poplar (Populus yunnanensis) plantlets exposed to high temperature and drought. PLoS ONE, 9(9), e107605 (https://doi.org/10.1371/journal.pone.0107605). DOI: https://doi.org/10.1371/journal.pone.0107605

Lima‐Melo, Y., Gollan, P. J., Tikkanen, M., Silveira, J. A., & Aro, E. M. (2019). Consequences of photosystem‐I damage and repair on photosynthesis and carbon use in Arabidopsis thaliana. The Plant Journal, 97(6), 1061-1072 ( https://doi.org/10.1111/tpj.14177). DOI: https://doi.org/10.1111/tpj.14177

Lopez-Delacalle, M., Silva, C. J., Mestre, T. C., Martinez, V., Blanco-Ulate, B., & Rivero, R. M. (2021). Synchronization of proline, ascorbate and oxidative stress pathways under the combination of salinity and heat in tomato plants. Environmental and Experimental Botany, 183, 104351 (https://doi.org/10.1016/j.envexpbot.2020.104351). DOI: https://doi.org/10.1016/j.envexpbot.2020.104351

Los, D. A., & Murata, N. (2004). Membrane fluidity and its roles in the perception of environmental signals. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1666(1-2), 142-157 (https://doi.org/10.1016/j.bbamem.2004.08.002). DOI: https://doi.org/10.1016/j.bbamem.2004.08.002

Martínez-Cuenca, M.-R., Primo-Capella, A., & Forner-Giner, M. A. (2019). Key role of boron compartmentalisation-related genes as the initial cell response to low B in citrus genotypes cultured in vitro. Horticulture, Environment, and Biotechnology, 60, 519-530 (https://doi.org/10.1007/s13580-018-0054-7). DOI: https://doi.org/10.1007/s13580-018-0054-7

Mathews, H., Litz, R., Wilde, H., Merkle, S., & Wetzstein, H. (1992). Stable integration and expression of β-glucuronidase and NPT II genes in mango somatic embryos. In Vitro–Plant, 28, 172-178 (https://doi.org/10.1007/BF02823312). DOI: https://doi.org/10.1007/BF02823312

Maurel, C., Boursiac, Y., Luu, D.-T., Santoni, V., Shahzad, Z., & Verdoucq, L. (2015). Aquaporins in plants. Physiological reviews, 95(4), 1321-1358 (https://doi.org/10.1152/physrev.00008.2015). DOI: https://doi.org/10.1152/physrev.00008.2015

Mirza, H., Hossain, M., & Fujita, M. (2010). Physiological and biochemical mechanisms of nitric oxide induced abiotic stress tolerance in plants. American Journal of Plant Physiology, 5(6), 295-324. DOI: https://doi.org/10.3923/ajpp.2010.295.324

Mittler, R., & Blumwald, E. (2015). The roles of ROS and ABA in systemic acquired acclimation. The Plant Cell, 27(1), 64-70 (https://doi.org/10.1105/tpc.114.133090). DOI: https://doi.org/10.1105/tpc.114.133090

Mittler, R., Finka, A., & Goloubinoff, P. (2012). How do plants feel the heat? Trends in biochemical sciences, 37(3), 118-125 (https://doi.org/10.1016/j.tibs.2011.11.007). DOI: https://doi.org/10.1016/j.tibs.2011.11.007

Moeder, W., Ung, H., Mosher, S., & Yoshioka, K. (2010). SA-ABA antagonism in defense responses. Plant Signaling & Behavior, 5(10), 1231-1233 (https://doi.org/10.4161/psb.5.10.12836). DOI: https://doi.org/10.4161/psb.5.10.12836

Mohanty, P., Allakhverdiev, S. I., & Murata, N. (2007). Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosynthesis research, 94, 217-224 (https://doi.org/10.1007/s11120-007-9184-y). DOI: https://doi.org/10.1007/s11120-007-9184-y

Mohanty, P., Vani, B., & S. Prakash, J. S. (2002). Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Zeitschrift für Naturforschung C, 57(9-10), 836-842 (https://doi.org/10.1515/znc-2002-9-1014). DOI: https://doi.org/10.1515/znc-2002-9-1014

Morales, J., Bermejo, A., Navarro, P., Forner-Giner, M. Á., & Salvador, A. (2021). Rootstock effect on fruit quality, anthocyanins, sugars, hydroxycinnamic acids and flavanones content during the harvest of blood oranges ‘Moro’and ‘Tarocco Rosso’grown in Spain. Food Chemistry, 342, 128305 (https://doi.org/10.1016/j.foodchem.2020.128305). DOI: https://doi.org/10.1016/j.foodchem.2020.128305

Moreno, A. A., & Orellana, A. (2011). The physiological role of the unfolded protein response in plants. Biological research, 44(1), 75-80 (http://dx.doi.org/10.4067/S0716-97602011000100010 ). DOI: https://doi.org/10.4067/S0716-97602011000100010

Muhlemann, J. K., Younts, T. L., & Muday, G. K. (2018). Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proceedings of the National Academy of Sciences, 115(47), E11188-E11197 (https://doi.org/10.1073/pnas.1811492115). DOI: https://doi.org/10.1073/pnas.1811492115

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681 (https://doi.org/10.1146/annurev.arplant.59.032607.092911). DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911

Murata, Y., Mori, I. C., & Munemasa, S. (2015). Diverse stomatal signaling and the signal integration mechanism. Annual Review of Plant Biology, 66, 369-392 (https://doi.org/10.1146/annurev-arplant-043014-114707). DOI: https://doi.org/10.1146/annurev-arplant-043014-114707

Naliwajski, M. R., & Skłodowska, M. (2014). Proline and its metabolism enzymes in cucumber cell cultures during acclimation to salinity. Protoplasma, 251, 201-209 (https://doi.org/10.1007/s00709-013-0538-3). DOI: https://doi.org/10.1007/s00709-013-0538-3

Nishiyama, Y., Allakhverdiev, S. I., & Murata, N. (2005). Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynthesis research, 84, 1-7 (https://doi.org/10.1007/s11120-004-6434-0). DOI: https://doi.org/10.1007/s11120-004-6434-0

Nishiyama, Y., Allakhverdiev, S. I., & Murata, N. (2006). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1757(7), 742-749 (https://doi.org/10.1016/j.bbabio.2006.05.013). DOI: https://doi.org/10.1016/j.bbabio.2006.05.013

Nishiyama, Y., Yamamoto, H., Allakhverdiev, S. I., Inaba, M., Yokota, A., & Murata, N. (2001). Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. The EMBO journal, 20(20), 5587-5594 (https://doi.org/10.1093/emboj/20.20.5587). DOI: https://doi.org/10.1093/emboj/20.20.5587

Pandey, P., Ramegowda, V., & Senthil-Kumar, M. (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Frontiers in Plant Science, 6, 723 (https://doi.org/10.3389/fpls.2015.00723). DOI: https://doi.org/10.3389/fpls.2015.00723

Pardo, J. M. (2010). Biotechnology of water and salinity stress tolerance. Current Opinion in Biotechnology, 21(2), 185-196 (https://doi.org/10.1016/j.copbio.2010.02.005). DOI: https://doi.org/10.1016/j.copbio.2010.02.005

Pastenes, C., & Horton, P. (1996). Effect of high temperature on photosynthesis in beans (I. Oxygen evolution and chlorophyll fluorescence). Plant physiology, 112(3), 1245-1251 (https://doi.org/10.1104/pp.112.3.1245). DOI: https://doi.org/10.1104/pp.112.3.1245

Pimentel, C. (2014). Photoinhibition in a C 4 plant, Zea mays L.: a minireview. Theoretical and Experimental Plant Physiology, 26, 157-165 (https://doi.org/10.1007/s40626-014-0015-1). DOI: https://doi.org/10.1007/s40626-014-0015-1

Primo-Capella, A., Martínez-Cuenca, M.-R., & Forner-Giner, M. Á. (2021). Cold stress in Citrus: A molecular, physiological and biochemical perspective. Horticulturae, 7(10), 340 (https://doi.org/10.3390/horticulturae7100340). DOI: https://doi.org/10.3390/horticulturae7100340

Primo-Capella, A., Martínez-Cuenca, M.-R., Gil-Muñoz, F., & Forner-Giner, M. A. (2021). Physiological characterization and proline route genes quantification under long-term cold stress in Carrizo citrange. Scientia Horticulturae, 276, 109744 (https://doi.org/10.1016/j.scienta.2020.109744). DOI: https://doi.org/10.1016/j.scienta.2020.109744

Rasool, A., Mansoor, S., Bhat, K., Hassan, G., Baba, T. R., Alyemeni, M. N., Alsahli, A. A., El-Serehy, H. A., Paray, B. A., & Ahmad, P. (2020). Mechanisms underlying graft union formation and rootstock scion interaction in horticultural plants. Frontiers in Plant Science, 11, 590847 (https://doi.org/10.3389/fpls.2020.590847). DOI: https://doi.org/10.3389/fpls.2020.590847

Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. plants, 8(2), 34 (https://doi.org/10.3390/plants8020034). DOI: https://doi.org/10.3390/plants8020034

Reuscher, S., Akiyama, M., Mori, C., Aoki, K., Shibata, D., & Shiratake, K. (2013). Genome-wide identification and expression analysis of aquaporins in tomato. PLoS ONE, 8(11), e79052 (https://doi.org/10.1371/journal.pone.0079052). DOI: https://doi.org/10.1371/journal.pone.0079052

Rodríguez-Gamir, J., Ancillo, G., Aparicio, F., Bordas, M., Primo-Millo, E., & Forner-Giner, M. Á. (2011). Water-deficit tolerance in citrus is mediated by the down regulation of PIP gene expression in the roots. Plant and soil, 347, 91-104 (https://doi.org/10.1007/s11104-011-0826-7). DOI: https://doi.org/10.1007/s11104-011-0826-7

Romero, P., Navarro, J., Pérez-Pérez, J., García-Sánchez, F., Gómez-Gómez, A., Porras, I., Martinez, V., & Botía, P. (2006). Deficit irrigation and rootstock: their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiology, 26(12), 1537-1548 (https://doi.org/10.1093/treephys/26.12.1537). DOI: https://doi.org/10.1093/treephys/26.12.1537

Ruiz, M., Quinones, A., Martínez-Alcántara, B., Aleza, P., Morillon, R., Navarro, L., Primo-Millo, E., & Martínez-Cuenca, M.-R. (2016). Effects of salinity on diploid (2x) and doubled diploid (4x) Citrus macrophylla genotypes. Scientia Horticulturae, 207, 33-40 (https://doi.org/10.1016/j.scienta.2016.05.007). DOI: https://doi.org/10.1016/j.scienta.2016.05.007

Sakurai, J., Ishikawa, F., Yamaguchi, T., Uemura, M., & Maeshima, M. (2005). Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology, 46(9), 1568-1577 (https://doi.org/10.1093/pcp/pci172). DOI: https://doi.org/10.1093/pcp/pci172

Salvucci, M. E., & Crafts-Brandner, S. J. (2004). Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant physiology, 134(4), 1460-1470 (https://doi.org/10.1104/pp.103.038323). DOI: https://doi.org/10.1104/pp.103.038323

Sánchez‐Martín, J., Heald, J., Kingston‐Smith, A., Winters, A., Rubiales, D., Sanz, M., Mur, L. A., & Prats, E. (2015). A metabolomic study in oats (A vena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo‐oxidative metabolism. Plant, Cell & Environment, 38(7), 14341452 (https://doi.org/10.1111/pce.12501). DOI: https://doi.org/10.1111/pce.12501

Santana-Vieira, D. D. S., Freschi, L., Almeida, L. A. d. H., Moraes, D. H. S. d., Neves, D. M., Santos, L. M. d., Bertolde, F. Z., Soares Filho, W. d. S., Coelho Filho, M. A., & Gesteira, A. d. S. (2016). Survival strategies of citrus rootstocks subjected to drought. Scientific Reports, 6(1), 38775 (https://doi.org/10.1038/srep38775). DOI: https://doi.org/10.1038/srep38775

Sarkar, C., Guenther, A. B., Park, J.-H., Seco, R., Alves, E., Batalha, S., Santana, R., Kim, S., Smith, J., & Tóta, J. (2020). PTR-TOF-MS eddy covariance measurements of isoprene and monoterpene fluxes from an eastern Amazonian rainforest. Atmospheric Chemistry and Physics, 20(12), 7179-7191 (https://doi.org/10.5194/acp-20-7179-2020). DOI: https://doi.org/10.5194/acp-20-7179-2020

Semenov, M. A., & Halford, N. G. (2009). Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. Journal of experimental botany, 60(10), 2791-2804 (https://doi.org/10.1093/jxb/erp164). DOI: https://doi.org/10.1093/jxb/erp164

Semenova, G. (2004). Structural reorganization of thylakoid systems in response to heat treatment. Photosynthetica, 42, 521-527 (https://doi.org/10.1007/S11099-005-0008-z). DOI: https://doi.org/10.1007/S11099-005-0008-z

Shafqat, W., Jaskani, M. J., Maqbool, R., Chattha, W. S., Ali, Z., Naqvi, S. A., Haider, M. S., Khan, I. A., & Vincent, C. I. (2021). Heat shock protein and aquaporin expression enhance water conserving behavior of citrus under water deficits and high temperature conditions. Environmental and Experimental Botany, 181, 104270 (https://doi.org/10.1016/j.envexpbot.2020.104270). DOI: https://doi.org/10.1016/j.envexpbot.2020.104270

Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment, 28(3), 269-277 ( https://doi.org/10.1111/j.1365-3040.2005.01324.x). DOI: https://doi.org/10.1111/j.1365-3040.2005.01324.x

Shen, X., Gmitter, F. G., & Grosser, J. W. (2011). Immature embryo rescue and culture. Plant embryo culture: Methods and protocols, 75-92 (https://doi.org/10.1007/978-1-61737-988-8_7). DOI: https://doi.org/10.1007/978-1-61737-988-8_7

Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of experimental botany, 58(2), 221-227 ( https://doi.org/10.1093/jxb/erl164). DOI: https://doi.org/10.1093/jxb/erl164

Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057-1060 (https://doi.org/10.1016/0031-9422(89)80182-7). DOI: https://doi.org/10.1016/0031-9422(89)80182-7

Song, Y., Chen, Q., Ci, D., Shao, X., & Zhang, D. (2014). Effects of high temperature on photosynthesis and related gene expression in poplar. BMC plant biology, 14, 1-20 (https://doi.org/10.1186/1471-2229-14-111). DOI: https://doi.org/10.1186/1471-2229-14-111

Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43 (https://doi.org/10.1111/nph.12797). DOI: https://doi.org/10.1111/nph.12797

Takahashi, S., & Murata, N. (2008). How do environmental stresses accelerate photoinhibition? Trends in plant science, 13(4), 178-182 (https://doi.org/10.1016/j.tplants.2008.01.005). DOI: https://doi.org/10.1016/j.tplants.2008.01.005

Takahashi, S., Nakamura, T., Sakamizu, M., Woesik, R. v., & Yamasaki, H. (2004). Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant and Cell Physiology, 45(2), 251-255 (https://doi.org/10.1093/pcp/pch028). DOI: https://doi.org/10.1093/pcp/pch028

Tan, S.-L., Yang, Y.-J., Liu, T., Zhang, S.-B., & Huang, W. (2020). Responses of photosystem I compared with photosystem II to combination of heat stress and fluctuating light in tobacco leaves. Plant Science, 292, 110371 (https://doi.org/10.1016/j.plantsci.2019.110371). DOI: https://doi.org/10.1016/j.plantsci.2019.110371

Thieme, C. J., Rojas-Triana, M., Stecyk, E., Schudoma, C., Zhang, W., Yang, L., Miñambres, M., Walther, D., Schulze, W. X., & Paz-Ares, J. (2015). Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nature Plants, 1(4), 1-9 (https://doi.org/10.1038/nplants.2015.25). DOI: https://doi.org/10.1038/nplants.2015.25

Urs, F., Steven, J., & Michael, E. S. (1998). Moderately High Temperatures Inhibit Ribulose-1, 5-Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase-Mediated Activation of Rubisco1. Plant physiology, 116(2), 539-546 (https://doi.org/10.1104/pp.116.2.539). DOI: https://doi.org/10.1104/pp.116.2.539

Vahdati, K., & Leslie, C. (2013). Abiotic stress: plant responses and applications in agriculture. BoD–Books on Demand. DOI: https://doi.org/10.5772/45842

Valliyodan, B., & Nguyen, H. T. (2006). Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current opinion in plant biology, 9(2), 189-195 (https://doi.org/10.1016/j.pbi.2006.01.019). DOI: https://doi.org/10.1016/j.pbi.2006.01.019

Vani, B., Saradhi, P. P., & Mohanty, P. (2001). Characterization of high temperature induced stress impairments in thylakoids of rice seedlings (http://nopr.niscpr.res.in/handle/123456789/15297).

Veste, M., Ben-Gal, A., & Shani, U. (1999). Impact of thermal stress and high VPD on gas exchange and chlorophyll fluorescence of Citrus grandis under desert conditions. II ISHS Conference on Fruit Production in the Tropics and Subtropics 531 (DOI: 10.17660/ActaHortic.2000.531.20) DOI: https://doi.org/10.17660/ActaHortic.2000.531.20

Vives-Peris, V., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2017). Citrus plants exude proline and phytohormones under abiotic stress conditions. Plant cell reports, 36, 1971-1984 (https://doi.org/10.1007/s00299-017-2214-0). DOI: https://doi.org/10.1007/s00299-017-2214-0

Vlot, A. C., Dempsey, D. M. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of phytopathology, 47, 177-206 (https://doi.org/10.1146/annurev.phyto.050908.135202). DOI: https://doi.org/10.1146/annurev.phyto.050908.135202

Wahid, A., & Shabbir, A. (2005). Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regulation, 46, 133-141(https://doi.org/10.1007/s10725-005-8379-5). DOI: https://doi.org/10.1007/s10725-005-8379-5

Wang, L.-J., Fan, L., Loescher, W., Duan, W., Liu, G.-J., Cheng, J.-S., Luo, H.-B., & Li, S.-H. (2010). Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC plant biology, 10, 1-10 (https://doi.org/10.1186/1471-2229-10-34). DOI: https://doi.org/10.1186/1471-2229-10-34

Warschefsky, E. J., Klein, L. L., Frank, M. H., Chitwood, D. H., Londo, J. P., von Wettberg, E. J., & Miller, A. J. (2016). Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends in plant science, 21(5), 418-437 (DOI:https://doi.org/10.1016/j.tplants.2015.11.008). DOI: https://doi.org/10.1016/j.tplants.2015.11.008

Weng, J.-K., Ye, M., Li, B., & Noel, J. P. (2016). Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell, 166(4), 881-893 (DOI: 10.1016/j.cell.2016.06.027). DOI: https://doi.org/10.1016/j.cell.2016.06.027

Xu, C., Yang, Z., Yang, S., Wang, L., & Wang, M. (2020). High humidity alleviates photosynthetic inhibition and oxidative damage of tomato seedlings under heat stress. Photosynthetica, 58(1), 146-155 (DOI: 10.32615/ps.2019.168). DOI: https://doi.org/10.32615/ps.2019.168

Xue, L.-J., Guo, W., Yuan, Y., Anino, E. O., Nyamdari, B., Wilson, M. C., Frost, C. J., Chen, H.-Y., Babst, B. A., & Harding, S. A. (2013). Constitutively elevated salicylic acid levels alter photosynthesis and oxidative state but not growth in transgenic Populus. The Plant Cell, 25(7), 2714-2730 (https://doi.org/10.1105/tpc.113.112839). DOI: https://doi.org/10.1105/tpc.113.112839

Yamamoto, H., & Shikanai, T. (2019). PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides. Plant physiology, 179(2), 588-600 (https://doi.org/10.1104/pp.18.01343). DOI: https://doi.org/10.1104/pp.18.01343

Yancey, P. H. (2020). Compatible and counteracting solutes. In Cellular and molecular physiology of cell volume regulation (pp. 81-109). CRC press. DOI: https://doi.org/10.1201/9780367812140-7

Yang, N., Sun, Z.-X., Feng, L.-S., Zheng, M.-Z., Chi, D.-C., Meng, W.-Z., Hou, Z.-Y., Bai, W., & Li, K.-Y. (2015). Plastic film mulching for water-efficient agricultural applications and degradable films materials development research. Materials and Manufacturing Processes, 30(2), 143-154 (https://doi.org/10.1080/10426914.2014.930958). DOI: https://doi.org/10.1080/10426914.2014.930958

Yang, X., Wen, X., Gong, H., Lu, Q., Yang, Z., Tang, Y., Liang, Z., & Lu, C. (2007). Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta, 225, 719-733 (https://doi.org/10.1007/s00425-006-0380-3). DOI: https://doi.org/10.1007/s00425-006-0380-3

Zandalinas, S. I., Balfagón, D., Arbona, V., & Gómez-Cadenas, A. (2017). Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus. Frontiers in Plant Science, 8, 953 (https://doi.org/10.3389/fpls.2017.00953). DOI: https://doi.org/10.3389/fpls.2017.00953

Zandalinas, S. I., Balfagón, D., Arbona, V., Gómez-Cadenas, A., Inupakutika, M. A., & Mittler, R. (2016). ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. Journal of experimental botany, 67(18), 5381-5390 (https://doi.org/10.1093/jxb/erw299). DOI: https://doi.org/10.1093/jxb/erw299

Zandalinas, S. I., Rivero, R. M., Martínez, V., Gómez-Cadenas, A., & Arbona, V. (2016). Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC plant biology, 16, 1-16 (https://doi.org/10.1186/s12870-016-0791-7). DOI: https://doi.org/10.1186/s12870-016-0791-7

Zhang, B., Schmoyer, D., Kirov, S., & Snoddy, J. (2004). GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics, 5(1), 1-8 (https://doi.org/10.1186/1471-2105-5-16). DOI: https://doi.org/10.1186/1471-2105-5-16

Zhang, H., & Sonnewald, U. (2017). Differences and commonalities of plant responses to single and combined stresses. The Plant Journal, 90(5), 839-855 ( https://doi.org/10.1111/tpj.13557). DOI: https://doi.org/10.1111/tpj.13557

Zhang, J. H., HUANG, W. D., LIU, Y. P., & PAN, Q. H. (2005). Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross‐temperature stresses. Journal of Integrative Plant Biology, 47(8), 959-970 ( https://doi.org/10.1111/j.1744-7909.2005.00109.x). DOI: https://doi.org/10.1111/j.1744-7909.2005.00109.x

Zhao, J., Missihoun, T. D., & Bartels, D. (2017). The role of Arabidopsis aldehyde dehydrogenase genes in response to high temperature and stress combinations. Journal of experimental botany, 68(15), 4295-4308 ( https://doi.org/10.1093/jxb/erx194). DOI: https://doi.org/10.1093/jxb/erx194

Zivcak, M., Brestic, M., Kunderlikova, K., Sytar, O., & Allakhverdiev, S. I. (2015). Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO 2 assimilation and photoprotection in wheat leaves. Photosynthesis research, 126, 449-463 (https://doi.org/10.1007/s11120-015-0121-1). DOI: https://doi.org/10.1007/s11120-015-0121-1




How to Cite

NAEEM, S., SAMI, A., HAIDER, M., ALI, M., KHALIQ, A., AKRAM, M., MUDASAR, M., ALI, Q., & JUNAID, M. (2024). HEAT STRESS IN CITRUS: A MOLECULAR FUNCTIONAL AND BIOCHEMICAL PERCEPTION. Bulletin of Biological and Allied Sciences Research, 2024(1), 69. https://doi.org/10.54112/bbasr.v2024i1.69

Most read articles by the same author(s)

1 2 > >>