HEAT STRESS IN CITRUS: A MOLECULAR FUNCTIONAL AND BIOCHEMICAL PERCEPTION
DOI:
https://doi.org/10.54112/bbasr.v2024i1.69Keywords:
citrus, rootstocks, heat stress, abiotic, antioxidant, citriculture, scionAbstract
Misfortunes caused by high temperatures compel us to more readily comprehend the physiological, hormonal, and sub-atomic systems of reactions, particularly in humid and subhumid yields such as citrus organic products that are accustomed to specific conditions. Heat stress is accustomed to drought and many other environmental factors affecting Citriculture. We observe the role of Rubisco, antioxidant enzymes, HSPs, physiological changes in plasma membranes, and the role of ABA and SA under heat stress in citrus. Not-with-standing essential exploration, developing and utilizing new and well-developed citrus rootstocks is an essential element for the regulation, according to ecological circumstances. Rootstocks are essential in controlling how plants react to changing environmental factors, such as heat stress. They transfer beneficial features and increase stress tolerance, which helps citrus plants be more resilient overall. The duration of growth, yield, fruit quality, and tolerance to biotic and abiotic challenges are only a few of the characteristics of citrus horticulture that can be significantly improved using the right rootstocks. Enhancing citrus fruits' resistance to unfavorable environmental circumstances is urgently needed due to climate change. We can learn more about how different rootstocks affect the scion's capacity to withstand abiotic pressures by examining the metabolic responses caused by those rootstocks. Because of its increased antioxidant capacity, improved stomatal control, and storage of protective proteins, Carrizo citrange, for instance, demonstrates superior resilience to heat stress when compared to Cleopatra mandarin. The combined impacts of heat and drought on citrus vegetation differ from the effects of each stress alone. Specific metabolic changes are occur, which agree with findings from other plant research looking at the combined impacts of stress on physiology, transcriptome, proteome, and metabolome. When using rootstocks like Sunki Maravilha mandarin under drought stress, important metabolites such as galactinol, raffinose, and SA can be enhanced in scions through grafting. On the other hand, the Cleopatra rootstock alters the metabolism of the scion, resulting in lower quantities of the amino acids galactinol, raffinose, proline, phenylalanine, and tryptophan, which could lead to undesired characteristics. These results highlight the value of continued research to solve the problems brought on by climate change and provide light on the role of rootstocks in citriculture.
Downloads
References
Albacete, A., Martínez-Andújar, C., Martínez-Pérez, A., Thompson, A. J., Dodd, I. C., & Pérez-Alfocea, F. (2015). Unravelling rootstock× scion interactions to improve food security. Journal of experimental botany, 66(8), 2211-2226. (https://doi.org/10.1093/jxb/erv027) DOI: https://doi.org/10.1093/jxb/erv027
Albrecht, U., McCollum, G., & Bowman, K. D. (2012). Influence of rootstock variety on Huanglongbing disease development in field-grown sweet orange (Citrus sinensis [L.] Osbeck) trees. Scientia Horticulturae, 138, 210-220. (https://doi.org/10.1016/j.scienta.2012.02.027) DOI: https://doi.org/10.1016/j.scienta.2012.02.027
Allakhverdiev, S. I., Kreslavski, V. D., Klimov, V. V., Los, D. A., Carpentier, R., & Mohanty, P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis research, 98, 541-550. (https://doi.org/10.1007/s11120-008-9331-0) DOI: https://doi.org/10.1007/s11120-008-9331-0
Allakhverdiev, S. I., Los, D. A., Mohanty, P., Nishiyama, Y., & Murata, N. (2007). Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(12), 1363-1371. (https://doi.org/10.1016/j.bbabio.2007.10.005) DOI: https://doi.org/10.1016/j.bbabio.2007.10.005
Allakhverdiev, S. I., Nishiyama, Y., Takahashi, S., Miyairi, S., Suzuki, I., & Murata, N. (2005). Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem II in Synechocystis. Plant physiology, 137(1), 263-273. (https://doi.org/10.1104/pp.104.054478) DOI: https://doi.org/10.1104/pp.104.054478
Aminaka, R., Taira, Y., Kashino, Y., Koike, H., & Satoh, K. (2006). Acclimation to the growth temperature and thermosensitivity of photosystem II in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. Plant and Cell Physiology, 47(12), 1612-1621. (https://doi.org/10.1093/pcp/pcl024) DOI: https://doi.org/10.1093/pcp/pcl024
Ananthakrishnan, G., Ćalović, M., Serrano, P., & Grosser, J. (2006). Production of additional allotetraploid somatic hybrids combining mandarings and sweet orange with pre-selected pummelos as potential candidates to replace sour orange rootstock. In Vitro Cellular & Developmental Biology-Plant, 42, 367-371.( https://doi.org/10.1079/IVP2006784) DOI: https://doi.org/10.1079/IVP2006784
Baldwin, E., Seymour, G., Taylor, J., & Tucker, G. (1993). Biochemistry of fruit ripening. (DOI 10. 1007/978-94-011-1584-1)
Balfagón, D., Rambla, J. L., Granell, A., Arbona, V., & Gomez-Cadenas, A. (2022). Grafting improves tolerance to combined drought and heat stresses by modifying metabolism in citrus scion. Environmental and Experimental Botany, 195, 104793.( https://doi.org/10.1016/j.envexpbot.2022.104793) DOI: https://doi.org/10.1016/j.envexpbot.2022.104793
Balfagón, D., Sengupta, S., Gómez-Cadenas, A., Fritschi, F. B., Azad, R. K., Mittler, R., & Zandalinas, S. I. (2019). Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant physiology, 181(4), 1668-1682. (https://doi.org/10.1104/pp.19.00956) DOI: https://doi.org/10.1104/pp.19.00956
Balfagón, D., Zandalinas, S. I., Baliño, P., Muriach, M., & Gómez-Cadenas, A. (2018). Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures. Plant Physiology and Biochemistry, 127, 194-199. (https://doi.org/10.1016/j.plaphy.2018.03.029) DOI: https://doi.org/10.1016/j.plaphy.2018.03.029
Balint, I., Bhattacharya, J., Perelman, A., Schatz, D., Moskovitz, Y., Keren, N., & Schwarz, R. (2006). Inactivation of the extrinsic subunit of photosystem II, PsbU, in Synechococcus PCC 7942 results in elevated resistance to oxidative stress. FEBS letters, 580(8), 2117-2122. (https://doi.org/10.1016/j.febslet.2006.03.020) DOI: https://doi.org/10.1016/j.febslet.2006.03.020
Bambach, N., & Gilbert, M. E. (2020). A dynamic model of RuBP-regeneration limited photosynthesis accounting for photoinhibition, heat and water stress. Agricultural and Forest Meteorology, 285, 107911. (https://doi.org/10.1016/j.agrformet.2020.107911) DOI: https://doi.org/10.1016/j.agrformet.2020.107911
Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical reviews in plant sciences, 24(1), 23-58. (https://doi.org/10.1080/07352680590910410) DOI: https://doi.org/10.1080/07352680590910410
Barua, D., Downs, C. A., & Heckathorn, S. A. (2003). Variation in chloroplast small heat-shock protein function is a major determinant of variation in thermotolerance of photosynthetic electron transport among ecotypes of Chenopodium album. Functional Plant Biology, 30(10), 1071-1079 (https://doi.org/10.1071/FP03106). DOI: https://doi.org/10.1071/FP03106
Ben-Hayyim, G., & Kochba, J. (1982). Growth characteristics and stability of tolerance of citrus callus cells subjected to NaCl stress. Plant Science Letters, 27(1), 87-94 (https://doi.org/10.1016/0304-4211(82)90075-X). DOI: https://doi.org/10.1016/0304-4211(82)90075-X
Berry, J., & Bjorkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of plant physiology, 31(1), 491-543 (https://doi.org/10.1146/annurev.pp.31.060180.002423). DOI: https://doi.org/10.1146/annurev.pp.31.060180.002423
Biedermannova, L., Riley, K. E., Berka, K., Hobza, P., & Vondrasek, J. (2008). Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane. Physical Chemistry Chemical Physics, 10(42), 6350-6359 (https://doi.org/10.1039/B805087B). DOI: https://doi.org/10.1039/b805087b
Bohnert, H. J., & Jensen, R. G. (1996). Strategies for engineering water-stress tolerance in plants. Trends in biotechnology, 14(3), 89-97 (ttps://doi.org/10.1016/0167-7799(96)80929-2). DOI: https://doi.org/10.1016/0167-7799(96)80929-2
Boursiac, Y., Léran, S., Corratgé-Faillie, C., Gojon, A., Krouk, G., & Lacombe, B. (2013). ABA transport and transporters. Trends in plant science, 18(6), 325-333 (https://doi.org/10.1016/j.tplants.2013.01.007). DOI: https://doi.org/10.1016/j.tplants.2013.01.007
Bukhov, N., & Mohanty, P. (1999). Elevated temperature stress effects on photosystems: characterization and evaluation of the nature of heat induced impairments. Concepts in photobiology: photosynthesis and photomorphogenesis, 617-648 (https://doi.org/10.1007/978-94-011-4832-0_20). DOI: https://doi.org/10.1007/978-94-011-4832-0_20
Carlos de Oliveira, A., Novac Garcia, A., Cristofani, M., & Machado, M. A. (2002). Identification of citrus hybrids through the combination of leaf apex morphology and SSR markers. Euphytica, 128(3), 397-403 (https://doi.org/10.1023/A:1021223309212). DOI: https://doi.org/10.1023/A:1021223309212
Castle, W. S. (2010). A career perspective on citrus rootstocks, their development, and commercialization. HortScience, 45(1), 11-15 (https://doi.org/10.21273/HORTSCI.45.1.11). DOI: https://doi.org/10.21273/HORTSCI.45.1.11
Chakraborty, D., Nagarajan, S., Aggarwal, P., Gupta, V., Tomar, R., Garg, R., Sahoo, R., Sarkar, A., Chopra, U. K., & Sarma, K. S. (2008). Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agricultural water management, 95(12), 1323-1334 (https://doi.org/10.1016/j.agwat.2008.06.001). DOI: https://doi.org/10.1016/j.agwat.2008.06.001
Chakraborty, U., & Pradhan, B. (2012). Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Brazilian Journal of Plant Physiology, 24, 117-130 (https://doi.org/10.1590/S1677-04202012000200005). DOI: https://doi.org/10.1590/S1677-04202012000200005
Chao, X., Yuqing, T., Xincheng, L., Huidong, Y., Yuting, W., Zhongdong, H., Xinlong, H., Buchun, L., & Jing, S. (2022). Exogenous spermidine enhances the photosynthetic and antioxidant capacity of citrus seedlings under high temperature. Plant Signaling & Behavior, 17(1), 2086372 (https://doi.org/10.1080/15592324.2022.2086372). DOI: https://doi.org/10.1080/15592324.2022.2086372
Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M. J., & Jung, R. (2001). Aquaporins constitute a large and highly divergent protein family in maize. Plant physiology, 125(3), 1206-1215 (https://doi.org/10.1104/pp.125.3.1206). DOI: https://doi.org/10.1104/pp.125.3.1206
Chinnusamy, V., Zhu, J., Zhou, T., & Zhu, J.-K. (2007). Small RNAs: big role in abiotic stress tolerance of plants. Advances in molecular breeding toward drought and salt tolerant crops, 223-260 (https://doi.org/10.1007/978-1-4020-5578-2_10). DOI: https://doi.org/10.1007/978-1-4020-5578-2_10
Chung, I. M., Kim, J. J., Lim, J. D., Yu, C. Y., Kim, S. H., & Hahn, S. J. (2006). Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress. Environmental and Experimental Botany, 56(1), 44-53 (https://doi.org/10.1016/j.envexpbot.2005.01.001). DOI: https://doi.org/10.1016/j.envexpbot.2005.01.001
Clarke, S. M., Cristescu, S. M., Miersch, O., Harren, F. J., Wasternack, C., & Mur, L. A. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist, 182(1), 175-187 (https://doi.org/10.1111/j.1469-8137.2008.02735.x). DOI: https://doi.org/10.1111/j.1469-8137.2008.02735.x
Clarke, S. M., Mur, L. A., Wood, J. E., & Scott, I. M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. The Plant Journal, 38(3), 432-447 (https://doi.org/10.1111/j.1365-313X.2004.02054.x). DOI: https://doi.org/10.1111/j.1365-313X.2004.02054.x
De Oliveira, A. (2019). Abiotic and Biotic Stress in Plants. BoD–Books on Demand. DOI: https://doi.org/10.5772/intechopen.77845
De Ollas, C., Arbona, V., Gómez-Cadenas, A., & Dodd, I. C. (2018). Attenuated accumulation of jasmonates modifies stomatal responses to water deficit. Journal of experimental botany, 69(8), 2103-2116 (https://doi.org/10.1093/jxb/ery045). DOI: https://doi.org/10.1093/jxb/ery045
Delauney, A. J., & Verma, D. P. S. (1993). Proline biosynthesis and osmoregulation in plants. The Plant Journal, 4(2), 215-223. DOI: https://doi.org/10.1046/j.1365-313X.1993.04020215.x
Devireddy, A. R., Zandalinas, S. I., Gómez-Cadenas, A., Blumwald, E., & Mittler, R. (2018). Coordinating the overall stomatal response of plants: Rapid leaf-to-leaf communication during light stress. Science Signaling, 11(518), eaam9514 (DOI: 10.1126/scisignal.aam9514). DOI: https://doi.org/10.1126/scisignal.aam9514
Finkelstein, R. (2013). Abscisic acid synthesis and response. The Arabidopsis book/American society of plant biologists, 11 (doi: 10.1199/tab.0166). DOI: https://doi.org/10.1199/tab.0166
Forner-Giner, M. A., Primo-Millo, E., & Forner, J. B. (2009). Performance of Forner-Alcaide 5 and Forner-Alcaide 13, hybrids of Cleopatra mandarin x Poncirus trifoliate, as salinity-tolerant citrus rootstocks. Journal of the American Pomological Society, 63(2), 72.
Gupta, A. B., & Sankararamakrishnan, R. (2009). Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC plant biology, 9, 1-28 (https://doi.org/10.1186/1471-2229-9-134). DOI: https://doi.org/10.1186/1471-2229-9-134
Han, Q., Guo, Q., Korpelainen, H., Niinemets, Ü., & Li, C. (2019). Rootstock determines the drought resistance of poplar grafting combinations. Tree Physiology, 39(11), 1855-1866 (https://doi.org/10.1093/treephys/tpz102). DOI: https://doi.org/10.1093/treephys/tpz102
Hasanuzzaman, M., Hossain, M. A., da Silva, J. A. T., & Fujita, M. (2012). Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. Crop stress and its management: perspectives and strategies, 261-315 (https://doi.org/10.1007/978-94-007-2220-0_8). DOI: https://doi.org/10.1007/978-94-007-2220-0_8
Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: a review. Plant Signaling & Behavior, 7(11), 1456-1466 (https://doi.org/10.4161/psb.21949). DOI: https://doi.org/10.4161/psb.21949
Heckathorn, S. A., Ryan, S. L., Baylis, J. A., Wang, D., Hamilton III, E. W., Cundiff, L., & Luthe, D. S. (2002). In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem II during heat stress. Functional Plant Biology, 29(8), 935-946 (https://doi.org/10.1071/PP01191). DOI: https://doi.org/10.1071/PP01191
Horváth, I., Glatz, A., Varvasovszki, V., Török, Z., Páli, T., Balogh, G., Kovács, E., Nádasdi, L., Benkö, S., & Joó, F. (1998). Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proceedings of the National Academy of Sciences, 95(7), 3513-3518 (https://doi.org/10.1073/pnas.95.7.3513). DOI: https://doi.org/10.1073/pnas.95.7.3513
Janská, A., Maršík, P., Zelenková, S., & Ovesná, J. (2010). Cold stress and acclimation–what is important for metabolic adjustment? Plant Biology, 12(3), 395-405 ( https://doi.org/10.1111/j.14388677.2009.00299.x). DOI: https://doi.org/10.1111/j.1438-8677.2009.00299.x
Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjovall, S., Fraysse, L., Weig, A. R., & Kjellbom, P. (2001). The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant physiology, 126(4), 1358-1369 (https://doi.org/10.1104/pp.126.4.1358). DOI: https://doi.org/10.1104/pp.126.4.1358
Kazan, K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in plant science, 20(4), 219-229 (DOI:https://doi.org/10.1016/j.tplants.2015.02.001). DOI: https://doi.org/10.1016/j.tplants.2015.02.001
Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6, 462 (https://doi.org/10.3389/fpls.2015.00462). DOI: https://doi.org/10.3389/fpls.2015.00462
Khan, M. S., Ahmad, D., & Khan, M. A. (2015). Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electronic Journal of Biotechnology, 18(4), 257-266 (https://doi.org/10.1016/j.ejbt.2015.04.002). DOI: https://doi.org/10.1016/j.ejbt.2015.04.002
Khan, M. S., & Khan, I. A. (2021). Citrus: Research, Development and Biotechnology. BoD–Books on Demand.
Kim, M., Canio, W., Kessler, S., & Sinha, N. (2001). Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science, 293(5528), 287-289 (DOI: 10.1126/science.1059805). DOI: https://doi.org/10.1126/science.1059805
Kishor, P. K., Hong, Z., Miao, G.-H., Hu, C.-A. A., & Verma, D. P. S. (1995). Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant physiology, 108(4), 1387-1394 (https://doi.org/10.1104/pp.108.4.1387). DOI: https://doi.org/10.1104/pp.108.4.1387
Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of experimental botany, 63(4), 1593-1608 (https://doi.org/10.1093/jxb/err460). DOI: https://doi.org/10.1093/jxb/err460
Kreslavski, V., Tatarinzev, N., Shabnova, N., Semenova, G., & Kosobryukhov, A. (2008). Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities. Journal of plant physiology, 165(15), 1592-1600 (https://doi.org/10.1016/j.jplph.2007.12.011). DOI: https://doi.org/10.1016/j.jplph.2007.12.011
Krieger-Liszkay, A. (2005). Singlet oxygen production in photosynthesis. Journal of experimental botany, 56(411), 337-346 (https://doi.org/10.1093/jxb/erh237). DOI: https://doi.org/10.1093/jxb/erh237
Kudo, H., & Harada, T. (2007). A graft-transmissible RNA from tomato rootstock changes leaf morphology of potato scion. HortScience, 42(2), 225-226 (https://doi.org/10.21273/HORTSCI.42.2.225). DOI: https://doi.org/10.21273/HORTSCI.42.2.225
Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant physiology, 138(2), 882-897 (https://doi.org/10.1104/pp.105.062257). DOI: https://doi.org/10.1104/pp.105.062257
Larkindale, J., & Huang, B. (2005). Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regulation, 47, 17-28 (https://doi.org/10.1007/s10725-005-1536-z). DOI: https://doi.org/10.1007/s10725-005-1536-z
Li, X., Yang, Y., Sun, X., Lin, H., Chen, J., Ren, J., Hu, X., & Yang, Y. (2014). Comparative physiological and proteomic analyses of poplar (Populus yunnanensis) plantlets exposed to high temperature and drought. PLoS ONE, 9(9), e107605 (https://doi.org/10.1371/journal.pone.0107605). DOI: https://doi.org/10.1371/journal.pone.0107605
Lima‐Melo, Y., Gollan, P. J., Tikkanen, M., Silveira, J. A., & Aro, E. M. (2019). Consequences of photosystem‐I damage and repair on photosynthesis and carbon use in Arabidopsis thaliana. The Plant Journal, 97(6), 1061-1072 ( https://doi.org/10.1111/tpj.14177). DOI: https://doi.org/10.1111/tpj.14177
Lopez-Delacalle, M., Silva, C. J., Mestre, T. C., Martinez, V., Blanco-Ulate, B., & Rivero, R. M. (2021). Synchronization of proline, ascorbate and oxidative stress pathways under the combination of salinity and heat in tomato plants. Environmental and Experimental Botany, 183, 104351 (https://doi.org/10.1016/j.envexpbot.2020.104351). DOI: https://doi.org/10.1016/j.envexpbot.2020.104351
Los, D. A., & Murata, N. (2004). Membrane fluidity and its roles in the perception of environmental signals. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1666(1-2), 142-157 (https://doi.org/10.1016/j.bbamem.2004.08.002). DOI: https://doi.org/10.1016/j.bbamem.2004.08.002
Martínez-Cuenca, M.-R., Primo-Capella, A., & Forner-Giner, M. A. (2019). Key role of boron compartmentalisation-related genes as the initial cell response to low B in citrus genotypes cultured in vitro. Horticulture, Environment, and Biotechnology, 60, 519-530 (https://doi.org/10.1007/s13580-018-0054-7). DOI: https://doi.org/10.1007/s13580-018-0054-7
Mathews, H., Litz, R., Wilde, H., Merkle, S., & Wetzstein, H. (1992). Stable integration and expression of β-glucuronidase and NPT II genes in mango somatic embryos. In Vitro–Plant, 28, 172-178 (https://doi.org/10.1007/BF02823312). DOI: https://doi.org/10.1007/BF02823312
Maurel, C., Boursiac, Y., Luu, D.-T., Santoni, V., Shahzad, Z., & Verdoucq, L. (2015). Aquaporins in plants. Physiological reviews, 95(4), 1321-1358 (https://doi.org/10.1152/physrev.00008.2015). DOI: https://doi.org/10.1152/physrev.00008.2015
Mirza, H., Hossain, M., & Fujita, M. (2010). Physiological and biochemical mechanisms of nitric oxide induced abiotic stress tolerance in plants. American Journal of Plant Physiology, 5(6), 295-324. DOI: https://doi.org/10.3923/ajpp.2010.295.324
Mittler, R., & Blumwald, E. (2015). The roles of ROS and ABA in systemic acquired acclimation. The Plant Cell, 27(1), 64-70 (https://doi.org/10.1105/tpc.114.133090). DOI: https://doi.org/10.1105/tpc.114.133090
Mittler, R., Finka, A., & Goloubinoff, P. (2012). How do plants feel the heat? Trends in biochemical sciences, 37(3), 118-125 (https://doi.org/10.1016/j.tibs.2011.11.007). DOI: https://doi.org/10.1016/j.tibs.2011.11.007
Moeder, W., Ung, H., Mosher, S., & Yoshioka, K. (2010). SA-ABA antagonism in defense responses. Plant Signaling & Behavior, 5(10), 1231-1233 (https://doi.org/10.4161/psb.5.10.12836). DOI: https://doi.org/10.4161/psb.5.10.12836
Mohanty, P., Allakhverdiev, S. I., & Murata, N. (2007). Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosynthesis research, 94, 217-224 (https://doi.org/10.1007/s11120-007-9184-y). DOI: https://doi.org/10.1007/s11120-007-9184-y
Mohanty, P., Vani, B., & S. Prakash, J. S. (2002). Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Zeitschrift für Naturforschung C, 57(9-10), 836-842 (https://doi.org/10.1515/znc-2002-9-1014). DOI: https://doi.org/10.1515/znc-2002-9-1014
Morales, J., Bermejo, A., Navarro, P., Forner-Giner, M. Á., & Salvador, A. (2021). Rootstock effect on fruit quality, anthocyanins, sugars, hydroxycinnamic acids and flavanones content during the harvest of blood oranges ‘Moro’and ‘Tarocco Rosso’grown in Spain. Food Chemistry, 342, 128305 (https://doi.org/10.1016/j.foodchem.2020.128305). DOI: https://doi.org/10.1016/j.foodchem.2020.128305
Moreno, A. A., & Orellana, A. (2011). The physiological role of the unfolded protein response in plants. Biological research, 44(1), 75-80 (http://dx.doi.org/10.4067/S0716-97602011000100010 ). DOI: https://doi.org/10.4067/S0716-97602011000100010
Muhlemann, J. K., Younts, T. L., & Muday, G. K. (2018). Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proceedings of the National Academy of Sciences, 115(47), E11188-E11197 (https://doi.org/10.1073/pnas.1811492115). DOI: https://doi.org/10.1073/pnas.1811492115
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681 (https://doi.org/10.1146/annurev.arplant.59.032607.092911). DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911
Murata, Y., Mori, I. C., & Munemasa, S. (2015). Diverse stomatal signaling and the signal integration mechanism. Annual Review of Plant Biology, 66, 369-392 (https://doi.org/10.1146/annurev-arplant-043014-114707). DOI: https://doi.org/10.1146/annurev-arplant-043014-114707
Naliwajski, M. R., & Skłodowska, M. (2014). Proline and its metabolism enzymes in cucumber cell cultures during acclimation to salinity. Protoplasma, 251, 201-209 (https://doi.org/10.1007/s00709-013-0538-3). DOI: https://doi.org/10.1007/s00709-013-0538-3
Nishiyama, Y., Allakhverdiev, S. I., & Murata, N. (2005). Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynthesis research, 84, 1-7 (https://doi.org/10.1007/s11120-004-6434-0). DOI: https://doi.org/10.1007/s11120-004-6434-0
Nishiyama, Y., Allakhverdiev, S. I., & Murata, N. (2006). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1757(7), 742-749 (https://doi.org/10.1016/j.bbabio.2006.05.013). DOI: https://doi.org/10.1016/j.bbabio.2006.05.013
Nishiyama, Y., Yamamoto, H., Allakhverdiev, S. I., Inaba, M., Yokota, A., & Murata, N. (2001). Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. The EMBO journal, 20(20), 5587-5594 (https://doi.org/10.1093/emboj/20.20.5587). DOI: https://doi.org/10.1093/emboj/20.20.5587
Pandey, P., Ramegowda, V., & Senthil-Kumar, M. (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Frontiers in Plant Science, 6, 723 (https://doi.org/10.3389/fpls.2015.00723). DOI: https://doi.org/10.3389/fpls.2015.00723
Pardo, J. M. (2010). Biotechnology of water and salinity stress tolerance. Current Opinion in Biotechnology, 21(2), 185-196 (https://doi.org/10.1016/j.copbio.2010.02.005). DOI: https://doi.org/10.1016/j.copbio.2010.02.005
Pastenes, C., & Horton, P. (1996). Effect of high temperature on photosynthesis in beans (I. Oxygen evolution and chlorophyll fluorescence). Plant physiology, 112(3), 1245-1251 (https://doi.org/10.1104/pp.112.3.1245). DOI: https://doi.org/10.1104/pp.112.3.1245
Pimentel, C. (2014). Photoinhibition in a C 4 plant, Zea mays L.: a minireview. Theoretical and Experimental Plant Physiology, 26, 157-165 (https://doi.org/10.1007/s40626-014-0015-1). DOI: https://doi.org/10.1007/s40626-014-0015-1
Primo-Capella, A., Martínez-Cuenca, M.-R., & Forner-Giner, M. Á. (2021). Cold stress in Citrus: A molecular, physiological and biochemical perspective. Horticulturae, 7(10), 340 (https://doi.org/10.3390/horticulturae7100340). DOI: https://doi.org/10.3390/horticulturae7100340
Primo-Capella, A., Martínez-Cuenca, M.-R., Gil-Muñoz, F., & Forner-Giner, M. A. (2021). Physiological characterization and proline route genes quantification under long-term cold stress in Carrizo citrange. Scientia Horticulturae, 276, 109744 (https://doi.org/10.1016/j.scienta.2020.109744). DOI: https://doi.org/10.1016/j.scienta.2020.109744
Rasool, A., Mansoor, S., Bhat, K., Hassan, G., Baba, T. R., Alyemeni, M. N., Alsahli, A. A., El-Serehy, H. A., Paray, B. A., & Ahmad, P. (2020). Mechanisms underlying graft union formation and rootstock scion interaction in horticultural plants. Frontiers in Plant Science, 11, 590847 (https://doi.org/10.3389/fpls.2020.590847). DOI: https://doi.org/10.3389/fpls.2020.590847
Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. plants, 8(2), 34 (https://doi.org/10.3390/plants8020034). DOI: https://doi.org/10.3390/plants8020034
Reuscher, S., Akiyama, M., Mori, C., Aoki, K., Shibata, D., & Shiratake, K. (2013). Genome-wide identification and expression analysis of aquaporins in tomato. PLoS ONE, 8(11), e79052 (https://doi.org/10.1371/journal.pone.0079052). DOI: https://doi.org/10.1371/journal.pone.0079052
Rodríguez-Gamir, J., Ancillo, G., Aparicio, F., Bordas, M., Primo-Millo, E., & Forner-Giner, M. Á. (2011). Water-deficit tolerance in citrus is mediated by the down regulation of PIP gene expression in the roots. Plant and soil, 347, 91-104 (https://doi.org/10.1007/s11104-011-0826-7). DOI: https://doi.org/10.1007/s11104-011-0826-7
Romero, P., Navarro, J., Pérez-Pérez, J., García-Sánchez, F., Gómez-Gómez, A., Porras, I., Martinez, V., & Botía, P. (2006). Deficit irrigation and rootstock: their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiology, 26(12), 1537-1548 (https://doi.org/10.1093/treephys/26.12.1537). DOI: https://doi.org/10.1093/treephys/26.12.1537
Ruiz, M., Quinones, A., Martínez-Alcántara, B., Aleza, P., Morillon, R., Navarro, L., Primo-Millo, E., & Martínez-Cuenca, M.-R. (2016). Effects of salinity on diploid (2x) and doubled diploid (4x) Citrus macrophylla genotypes. Scientia Horticulturae, 207, 33-40 (https://doi.org/10.1016/j.scienta.2016.05.007). DOI: https://doi.org/10.1016/j.scienta.2016.05.007
Sakurai, J., Ishikawa, F., Yamaguchi, T., Uemura, M., & Maeshima, M. (2005). Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology, 46(9), 1568-1577 (https://doi.org/10.1093/pcp/pci172). DOI: https://doi.org/10.1093/pcp/pci172
Salvucci, M. E., & Crafts-Brandner, S. J. (2004). Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant physiology, 134(4), 1460-1470 (https://doi.org/10.1104/pp.103.038323). DOI: https://doi.org/10.1104/pp.103.038323
Sánchez‐Martín, J., Heald, J., Kingston‐Smith, A., Winters, A., Rubiales, D., Sanz, M., Mur, L. A., & Prats, E. (2015). A metabolomic study in oats (A vena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo‐oxidative metabolism. Plant, Cell & Environment, 38(7), 14341452 (https://doi.org/10.1111/pce.12501). DOI: https://doi.org/10.1111/pce.12501
Santana-Vieira, D. D. S., Freschi, L., Almeida, L. A. d. H., Moraes, D. H. S. d., Neves, D. M., Santos, L. M. d., Bertolde, F. Z., Soares Filho, W. d. S., Coelho Filho, M. A., & Gesteira, A. d. S. (2016). Survival strategies of citrus rootstocks subjected to drought. Scientific Reports, 6(1), 38775 (https://doi.org/10.1038/srep38775). DOI: https://doi.org/10.1038/srep38775
Sarkar, C., Guenther, A. B., Park, J.-H., Seco, R., Alves, E., Batalha, S., Santana, R., Kim, S., Smith, J., & Tóta, J. (2020). PTR-TOF-MS eddy covariance measurements of isoprene and monoterpene fluxes from an eastern Amazonian rainforest. Atmospheric Chemistry and Physics, 20(12), 7179-7191 (https://doi.org/10.5194/acp-20-7179-2020). DOI: https://doi.org/10.5194/acp-20-7179-2020
Semenov, M. A., & Halford, N. G. (2009). Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. Journal of experimental botany, 60(10), 2791-2804 (https://doi.org/10.1093/jxb/erp164). DOI: https://doi.org/10.1093/jxb/erp164
Semenova, G. (2004). Structural reorganization of thylakoid systems in response to heat treatment. Photosynthetica, 42, 521-527 (https://doi.org/10.1007/S11099-005-0008-z). DOI: https://doi.org/10.1007/S11099-005-0008-z
Shafqat, W., Jaskani, M. J., Maqbool, R., Chattha, W. S., Ali, Z., Naqvi, S. A., Haider, M. S., Khan, I. A., & Vincent, C. I. (2021). Heat shock protein and aquaporin expression enhance water conserving behavior of citrus under water deficits and high temperature conditions. Environmental and Experimental Botany, 181, 104270 (https://doi.org/10.1016/j.envexpbot.2020.104270). DOI: https://doi.org/10.1016/j.envexpbot.2020.104270
Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment, 28(3), 269-277 ( https://doi.org/10.1111/j.1365-3040.2005.01324.x). DOI: https://doi.org/10.1111/j.1365-3040.2005.01324.x
Shen, X., Gmitter, F. G., & Grosser, J. W. (2011). Immature embryo rescue and culture. Plant embryo culture: Methods and protocols, 75-92 (https://doi.org/10.1007/978-1-61737-988-8_7). DOI: https://doi.org/10.1007/978-1-61737-988-8_7
Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of experimental botany, 58(2), 221-227 ( https://doi.org/10.1093/jxb/erl164). DOI: https://doi.org/10.1093/jxb/erl164
Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057-1060 (https://doi.org/10.1016/0031-9422(89)80182-7). DOI: https://doi.org/10.1016/0031-9422(89)80182-7
Song, Y., Chen, Q., Ci, D., Shao, X., & Zhang, D. (2014). Effects of high temperature on photosynthesis and related gene expression in poplar. BMC plant biology, 14, 1-20 (https://doi.org/10.1186/1471-2229-14-111). DOI: https://doi.org/10.1186/1471-2229-14-111
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43 (https://doi.org/10.1111/nph.12797). DOI: https://doi.org/10.1111/nph.12797
Takahashi, S., & Murata, N. (2008). How do environmental stresses accelerate photoinhibition? Trends in plant science, 13(4), 178-182 (https://doi.org/10.1016/j.tplants.2008.01.005). DOI: https://doi.org/10.1016/j.tplants.2008.01.005
Takahashi, S., Nakamura, T., Sakamizu, M., Woesik, R. v., & Yamasaki, H. (2004). Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant and Cell Physiology, 45(2), 251-255 (https://doi.org/10.1093/pcp/pch028). DOI: https://doi.org/10.1093/pcp/pch028
Tan, S.-L., Yang, Y.-J., Liu, T., Zhang, S.-B., & Huang, W. (2020). Responses of photosystem I compared with photosystem II to combination of heat stress and fluctuating light in tobacco leaves. Plant Science, 292, 110371 (https://doi.org/10.1016/j.plantsci.2019.110371). DOI: https://doi.org/10.1016/j.plantsci.2019.110371
Thieme, C. J., Rojas-Triana, M., Stecyk, E., Schudoma, C., Zhang, W., Yang, L., Miñambres, M., Walther, D., Schulze, W. X., & Paz-Ares, J. (2015). Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nature Plants, 1(4), 1-9 (https://doi.org/10.1038/nplants.2015.25). DOI: https://doi.org/10.1038/nplants.2015.25
Urs, F., Steven, J., & Michael, E. S. (1998). Moderately High Temperatures Inhibit Ribulose-1, 5-Bisphosphate Carboxylase/Oxygenase (Rubisco) Activase-Mediated Activation of Rubisco1. Plant physiology, 116(2), 539-546 (https://doi.org/10.1104/pp.116.2.539). DOI: https://doi.org/10.1104/pp.116.2.539
Vahdati, K., & Leslie, C. (2013). Abiotic stress: plant responses and applications in agriculture. BoD–Books on Demand. DOI: https://doi.org/10.5772/45842
Valliyodan, B., & Nguyen, H. T. (2006). Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current opinion in plant biology, 9(2), 189-195 (https://doi.org/10.1016/j.pbi.2006.01.019). DOI: https://doi.org/10.1016/j.pbi.2006.01.019
Vani, B., Saradhi, P. P., & Mohanty, P. (2001). Characterization of high temperature induced stress impairments in thylakoids of rice seedlings (http://nopr.niscpr.res.in/handle/123456789/15297).
Veste, M., Ben-Gal, A., & Shani, U. (1999). Impact of thermal stress and high VPD on gas exchange and chlorophyll fluorescence of Citrus grandis under desert conditions. II ISHS Conference on Fruit Production in the Tropics and Subtropics 531 (DOI: 10.17660/ActaHortic.2000.531.20) DOI: https://doi.org/10.17660/ActaHortic.2000.531.20
Vives-Peris, V., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2017). Citrus plants exude proline and phytohormones under abiotic stress conditions. Plant cell reports, 36, 1971-1984 (https://doi.org/10.1007/s00299-017-2214-0). DOI: https://doi.org/10.1007/s00299-017-2214-0
Vlot, A. C., Dempsey, D. M. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of phytopathology, 47, 177-206 (https://doi.org/10.1146/annurev.phyto.050908.135202). DOI: https://doi.org/10.1146/annurev.phyto.050908.135202
Wahid, A., & Shabbir, A. (2005). Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regulation, 46, 133-141(https://doi.org/10.1007/s10725-005-8379-5). DOI: https://doi.org/10.1007/s10725-005-8379-5
Wang, L.-J., Fan, L., Loescher, W., Duan, W., Liu, G.-J., Cheng, J.-S., Luo, H.-B., & Li, S.-H. (2010). Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC plant biology, 10, 1-10 (https://doi.org/10.1186/1471-2229-10-34). DOI: https://doi.org/10.1186/1471-2229-10-34
Warschefsky, E. J., Klein, L. L., Frank, M. H., Chitwood, D. H., Londo, J. P., von Wettberg, E. J., & Miller, A. J. (2016). Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends in plant science, 21(5), 418-437 (DOI:https://doi.org/10.1016/j.tplants.2015.11.008). DOI: https://doi.org/10.1016/j.tplants.2015.11.008
Weng, J.-K., Ye, M., Li, B., & Noel, J. P. (2016). Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell, 166(4), 881-893 (DOI: 10.1016/j.cell.2016.06.027). DOI: https://doi.org/10.1016/j.cell.2016.06.027
Xu, C., Yang, Z., Yang, S., Wang, L., & Wang, M. (2020). High humidity alleviates photosynthetic inhibition and oxidative damage of tomato seedlings under heat stress. Photosynthetica, 58(1), 146-155 (DOI: 10.32615/ps.2019.168). DOI: https://doi.org/10.32615/ps.2019.168
Xue, L.-J., Guo, W., Yuan, Y., Anino, E. O., Nyamdari, B., Wilson, M. C., Frost, C. J., Chen, H.-Y., Babst, B. A., & Harding, S. A. (2013). Constitutively elevated salicylic acid levels alter photosynthesis and oxidative state but not growth in transgenic Populus. The Plant Cell, 25(7), 2714-2730 (https://doi.org/10.1105/tpc.113.112839). DOI: https://doi.org/10.1105/tpc.113.112839
Yamamoto, H., & Shikanai, T. (2019). PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides. Plant physiology, 179(2), 588-600 (https://doi.org/10.1104/pp.18.01343). DOI: https://doi.org/10.1104/pp.18.01343
Yancey, P. H. (2020). Compatible and counteracting solutes. In Cellular and molecular physiology of cell volume regulation (pp. 81-109). CRC press. DOI: https://doi.org/10.1201/9780367812140-7
Yang, N., Sun, Z.-X., Feng, L.-S., Zheng, M.-Z., Chi, D.-C., Meng, W.-Z., Hou, Z.-Y., Bai, W., & Li, K.-Y. (2015). Plastic film mulching for water-efficient agricultural applications and degradable films materials development research. Materials and Manufacturing Processes, 30(2), 143-154 (https://doi.org/10.1080/10426914.2014.930958). DOI: https://doi.org/10.1080/10426914.2014.930958
Yang, X., Wen, X., Gong, H., Lu, Q., Yang, Z., Tang, Y., Liang, Z., & Lu, C. (2007). Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta, 225, 719-733 (https://doi.org/10.1007/s00425-006-0380-3). DOI: https://doi.org/10.1007/s00425-006-0380-3
Zandalinas, S. I., Balfagón, D., Arbona, V., & Gómez-Cadenas, A. (2017). Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus. Frontiers in Plant Science, 8, 953 (https://doi.org/10.3389/fpls.2017.00953). DOI: https://doi.org/10.3389/fpls.2017.00953
Zandalinas, S. I., Balfagón, D., Arbona, V., Gómez-Cadenas, A., Inupakutika, M. A., & Mittler, R. (2016). ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. Journal of experimental botany, 67(18), 5381-5390 (https://doi.org/10.1093/jxb/erw299). DOI: https://doi.org/10.1093/jxb/erw299
Zandalinas, S. I., Rivero, R. M., Martínez, V., Gómez-Cadenas, A., & Arbona, V. (2016). Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC plant biology, 16, 1-16 (https://doi.org/10.1186/s12870-016-0791-7). DOI: https://doi.org/10.1186/s12870-016-0791-7
Zhang, B., Schmoyer, D., Kirov, S., & Snoddy, J. (2004). GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics, 5(1), 1-8 (https://doi.org/10.1186/1471-2105-5-16). DOI: https://doi.org/10.1186/1471-2105-5-16
Zhang, H., & Sonnewald, U. (2017). Differences and commonalities of plant responses to single and combined stresses. The Plant Journal, 90(5), 839-855 ( https://doi.org/10.1111/tpj.13557). DOI: https://doi.org/10.1111/tpj.13557
Zhang, J. H., HUANG, W. D., LIU, Y. P., & PAN, Q. H. (2005). Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross‐temperature stresses. Journal of Integrative Plant Biology, 47(8), 959-970 ( https://doi.org/10.1111/j.1744-7909.2005.00109.x). DOI: https://doi.org/10.1111/j.1744-7909.2005.00109.x
Zhao, J., Missihoun, T. D., & Bartels, D. (2017). The role of Arabidopsis aldehyde dehydrogenase genes in response to high temperature and stress combinations. Journal of experimental botany, 68(15), 4295-4308 ( https://doi.org/10.1093/jxb/erx194). DOI: https://doi.org/10.1093/jxb/erx194
Zivcak, M., Brestic, M., Kunderlikova, K., Sytar, O., & Allakhverdiev, S. I. (2015). Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO 2 assimilation and photoprotection in wheat leaves. Photosynthesis research, 126, 449-463 (https://doi.org/10.1007/s11120-015-0121-1). DOI: https://doi.org/10.1007/s11120-015-0121-1
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 S NAEEM, A SAMI, MZ HAIDER, MH ALI, A KHALIQ, MI AKRAM, M MUDASAR, Q ALI, MD JUNAID
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.