The GENOME-WIDE BIOINFORMATICS ANALYSIS OF 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE (ACS), 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE (ACO) AND ETHYLENE OVERPRODUCER 1 (ETO1) GENE FAMILY OF FRAGARIA VESCA (WOODLAND STRAWBERRY)

Authors

  • S FATIMA Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan
  • KUHT CHEEMA Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan
  • M SHAFIQ Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab Lahore, Pakistan
  • MT MANZOOR Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
  • Q ALI Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
  • MS HAIDER Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
  • MA SHAHID Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, United States

DOI:

https://doi.org/10.54112/bbasr.v2023i1.38

Abstract

This study was made on three genes ACS, ACO, and ETO, which are involved in ethylene biosynthesis pathway in Fragaria vesa plant, to know about evolution, conserved motifs and domains, gene expressions, and phylogeny of these genes. After carefully screening using Phytozome plant gene database, NCBI gene database, Motif finder, and MegaX phylogenetic tree 10 gene sequences of ACS, 5 gene sequences of ACO and 3 gene sequences of ETO were identified. Four ETO gene sequences of Arabidopsis thaliana were also used to authenticate this research because only 3 ETO gene sequences of Fragaria vesca analyses cannot be done.  MegaX evolutionary analysis, TB tools domain analysis, Meme motif analysis, Cis-regulatory analysis, Wolf analysis were made on these sequences to acquire detailed knowledge. The presence of light, anaerobic induction, abscisic acid, MeJA, gibberellin, low temperature, drought, cell cycle, and endosperm expression responsive elements were identified in FeACS, FeACO, and FeETO genes by cis-regulatory analysis. This study will help for further practical experimentation on ethylene regulators. The bioinformatics-based genome-wide assessment of the family of Fragaria vesca attempted in the present study could be a significant step for further practical investigation on ethylene regulators based on genome-wide expression profiling.

References

Bailey, T. L., Johnson, J., Grant, C. E., and Noble, W. S. (2015). The MEME Suite. Nucleic acids research 43, W39-W49. DOI: https://doi.org/10.1093/nar/gkv416

Cokol, M., Nair, R., and Rost, B. (2000). Finding nuclear localization signals. EMBO reports 1, 411-415. DOI: https://doi.org/10.1093/embo-reports/kvd092

Dong, C., Hu, H., and Xie, J. (2016). Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas. Genome 59, 1085-1100. DOI: https://doi.org/10.1139/gen-2016-0081

Fornara, F. (2009). Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Europe PMC.

Fornara, F., Panigrahi, K. C., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J. A., and Coupland, G. (2009). Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Developmental cell 17, 75-86. DOI: https://doi.org/10.1016/j.devcel.2009.06.015

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S. e., Wilkins, M. R., Appel, R. D., and Bairoch, A. (2005). Protein Identification and Analysis Tools on the ExPASy Server. In "The Proteomics Protocols Handbook" (J. M. Walker, ed.), pp. 571-607. Humana Press, Totowa, NJ. DOI: https://doi.org/10.1385/1-59259-890-0:571

Guo, Y. (2009). Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. Europe PMC. DOI: https://doi.org/10.1105/tpc.108.064139

Gupta, S., Malviya, N., Kushwaha, H., Nasim, J., Bisht, N. C., Singh, V., and Yadav, D. (2015). Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor. Planta 241, 549-562. DOI: https://doi.org/10.1007/s00425-014-2239-3

Horton, P., Park, K.-J., Obayashi, T., and Nakai, K. (2006). Protein subcellular localization prediction with WoLF PSORT. In "Proceedings of the 4th Asia-Pacific bioinformatics conference", pp. 39-48. World Scientific. DOI: https://doi.org/10.1142/9781860947292_0007

Imaizumi, T. (2005). FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Europe PMC. DOI: https://doi.org/10.1126/science.1110586

Jakubowicz, M. (2002). Structure, catalytic activity and evolutionary relationships of 1-aminocyclopropane-1-carboxylate synthase, the key enzyme of ethylene synthesis in higher plants. Acta Biochim Pol 49, 757-74. DOI: https://doi.org/10.18388/abp.2002_3784

Jones, D. M., and Vandepoele, K. (2020). Identification and evolution of gene regulatory networks: insights from comparative studies in plants. Curr Opin Plant Biol 54, 42-48. DOI: https://doi.org/10.1016/j.pbi.2019.12.008

Kantety, R. V., La Rota, M., Matthews, D. E., and Sorrells, M. E. (2002). Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Molecular Biology 48, 501-510. DOI: https://doi.org/10.1023/A:1014875206165

Kong, H., Landherr, L. L., Frohlich, M. W., Leebens-Mack, J., Ma, H., and dePamphilis, C. W. (2007). Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 50, 873-85. DOI: https://doi.org/10.1111/j.1365-313X.2007.03097.x

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35, 1547-1549. DOI: https://doi.org/10.1093/molbev/msy096

Lijavetzky, D., Carbonero, P., and Vicente-Carbajosa, J. (2003). Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC evolutionary biology 3, 17. DOI: https://doi.org/10.1186/1471-2148-3-17

Malviya, N., Gupta, S., Singh, V., Yadav, M., Bisht, N., Sarangi, B., and Yadav, D. (2015). Genome wide in silico characterization of Dof gene families of pigeonpea (Cajanus cajan (L) Millsp.). Molecular biology reports 42, 535-552. DOI: https://doi.org/10.1007/s11033-014-3797-y

Miyashima, S. (2019). Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Europe PMC. DOI: https://doi.org/10.1038/s41586-018-0839-y

Moreno-Risueno, M. Á., Martínez, M., Vicente-Carbajosa, J., and Carbonero, P. (2007). The family of DOF transcription factors: from green unicellular algae to vascular plants. Molecular Genetics and Genomics 277, 379-390. DOI: https://doi.org/10.1007/s00438-006-0186-9

Nasim, J., Malviya, N., Kumar, R., and Yadav, D. (2016). Genome-wide bioinformatics analysis of Dof transcription factor gene family of chickpea and its comparative phylogenetic assessment with Arabidopsis and rice. Plant Systematics and Evolution 302, 1009-1026. DOI: https://doi.org/10.1007/s00606-016-1314-6

Peng, F. Y., and Weselake, R. J. (2011). Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis. BMC Genomics 12, 286. DOI: https://doi.org/10.1186/1471-2164-12-286

Ramirez-Parra, E., Perianez-Rodriguez, J., Navarro-Neila, S., Gude, I., Moreno-Risueno, M. A., and Del Pozo, J. C. (2017). The transcription factor OBP4 controls root growth and promotes callus formation. New Phytol 213, 1787-1801. DOI: https://doi.org/10.1111/nph.14315

Ramirez-Tejero, J. A., Jimenez-Ruiz, J., Leyva-Perez, M. O., Barroso, J. B., and Luque, F. (2020). Gene Expression Pattern in Olive Tree Organs (Olea europaea L.). Genes (Basel) 11. DOI: https://doi.org/10.3390/genes11050544

Rombauts, S., Déhais, P., Van Montagu, M., and Rouzé, P. (1999). PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Research 27, 295-296. DOI: https://doi.org/10.1093/nar/27.1.295

Rymen, B., Kawamura, A., Schafer, S., Breuer, C., Iwase, A., Shibata, M., Ikeda, M., Mitsuda, N., Koncz, C., Ohme-Takagi, M., Matsui, M., and Sugimoto, K. (2017). ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator. Plant Physiol 173, 1750-1762. DOI: https://doi.org/10.1104/pp.16.01945

Wei, Q., Wang, W., Hu, T., Hu, H., Mao, W., Zhu, Q., and Bao, C. (2018). Genome-wide identification and characterization of Dof transcription factors in eggplant (Solanum melongena L.). PeerJ 6, e4481. DOI: https://doi.org/10.7717/peerj.4481

Wellmer, F., Alves-Ferreira, M., Dubois, A., Riechmann, J. L., and Meyerowitz, E. M. (2006). Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet 2, e117. DOI: https://doi.org/10.1371/journal.pgen.0020117

Wen, C. L., Cheng, Q., Zhao, L., Mao, A., Yang, J., Yu, S., Weng, Y., and Xu, Y. (2016). Identification and characterisation of Dof transcription factors in the cucumber genome. Sci Rep 6, 23072. DOI: https://doi.org/10.1038/srep23072

Wu, J., Fu, L., and Yi, H. (2016). Genome-Wide Identification of the Transcription Factors Involved in Citrus Fruit Ripening from the Transcriptomes of a Late-Ripening Sweet Orange Mutant and Its Wild Type. PLoS One 11, e0154330. DOI: https://doi.org/10.1371/journal.pone.0154330

Xu, P., and Cai, W. (2019). Nitrate-responsive OBP4-XTH9 regulatory module controls lateral root development in Arabidopsis thaliana. PLoS Genet 15, e1008465. DOI: https://doi.org/10.1371/journal.pgen.1008465

Xu, P., Chen, H., Ying, L., and Cai, W. (2016). AtDOF5.4/OBP4, a DOF Transcription Factor Gene that Negatively Regulates Cell Cycle Progression and Cell Expansion in Arabidopsis thaliana. Sci Rep 6, 27705. DOI: https://doi.org/10.1038/srep27705

Yanagisawa, S. (2002a). The Dof family of plant transcription factors. Trends in plant science 7, 555-560.

Yanagisawa, S. (2002b). The Dof family of plant transcription factors. Europe PMC. DOI: https://doi.org/10.1016/S1360-1385(02)02362-2

Yanagisawa, S., and Schmidt, R. J. (1999). Diversity and similarity among recognition sequences of Dof transcription factors. The Plant Journal 17, 209-214. DOI: https://doi.org/10.1046/j.1365-313X.1999.00363.x

Yang, X., and Tuskan, G. A. (2006). Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant physiology 142, 820-830. DOI: https://doi.org/10.1104/pp.106.083642

Zou, H. F., Zhang, Y. Q., Wei, W., Chen, H. W., Song, Q. X., Liu, Y. F., Zhao, M. Y., Wang, F., Zhang, B. C., Lin, Q., Zhang, W. K., Ma, B., Zhou, Y. H., Zhang, J. S., and Chen, S. Y. (2013). The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis. Biochem J 449, 373-88. DOI: https://doi.org/10.1042/BJ20110060

Downloads

Published

2023-08-26

How to Cite

FATIMA, S., CHEEMA, K., SHAFIQ, M., MANZOOR, M., ALI, Q., HAIDER, M., & SHAHID, M. (2023). The GENOME-WIDE BIOINFORMATICS ANALYSIS OF 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE (ACS), 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE (ACO) AND ETHYLENE OVERPRODUCER 1 (ETO1) GENE FAMILY OF FRAGARIA VESCA (WOODLAND STRAWBERRY). Bulletin of Biological and Allied Sciences Research, 2023(1), 38. https://doi.org/10.54112/bbasr.v2023i1.38

Most read articles by the same author(s)