• MF BASHIR Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan
  • MU FAROOQ Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan
  • S KHALID Department of Biotechnology, School of Life Sciences, University of Essex Colchester Campus, United Kingdom
  • Q ALI Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan/Department of Plant Breeding and Genetics, University of the Punjab Lahore, Pakistan



Microalgae, Biotechnology applications, microalgae biomass, antiviral, antimicrobial, anti-cancer, microalgae products


Microalgae's role as an energy source has indeed been extensively studied. However, due to the high cost of producing microalgae biomass, its use as an energy source in the feedstock cannot guarantee its scalability or economic sustainability. Microalgae biomass can be co-processed with other bio-refinery applications to reduce costs and increase sustainability. As a result, it raises the need to evaluate the role of microalgae-biomass beyond its current use. Microalgae have unique characteristics that make them suitable as alternate feedstock for various bio-refinery applications. Microalgae have a one-of-a-kind ability to be used in industrial as well as environmental applications. As a result, this review aims to broaden the area of incorporating microalgae with the other biotechnology applications to improve their long-term viability. Microalgae as just a feed for animals & aquaculture, cosmetics, environmental, fertilizers and medicine, and other biotechnological applications are thoroughly examined. It also discusses the challenges, opportunities, advances, and prospects for microalgae. According to the findings, study funding and a change in microalgae concentration from biofuels produced to biorefinery byproducts can identify microalgae as a potential feedstock. Furthermore, to cover the costs of microalgae-biomass-processing, technology integration is unavoidable. It is expected that even this review would've been beneficial in explaining the future role of microalgae in biorefinery applications. Microalgae have special features that can be used in environmental and industrial applications. Animal & aqua-culture-feed, fertilizer, pharmaceuticals, or cosmetic items are all possible uses for microalgae. Therefore, it necessitates that researchers concentrate on algae co-processing. A unified bio-refinery strategy could be used to increase the value of microalgae-biomass.


Apt, K. E., and Behrens, P. W. J. J. o. p. (1999). Commercial developments in microalgal biotechnology. 35, 215-226. DOI: DOI:

Apt, K. E., Grossman, A., Kroth-Pancic, P. J. M., and MGG, G. G. (1996). Stable nuclear transformation of the diatom Phaeodactylum tricornutum. 252, 572-579. DOI: DOI:

Ayehunie, S., Belay, A., Baba, T. W., Ruprecht, R. M. J. J. o. a. i. d. s., and Association, h. r. o. p. o. t. I. R. (1998). Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). 18, 7-12. DOI: DOI:

Babu, B. J. B., Bioproducts, and economy, B. I. f. a. s. (2008). Biomass pyrolysis: a state‐of‐the‐art review. 2, 393-414. DOI: DOI:

Barrow, C., and Shahidi, F. (2007). "Marine nutraceuticals and functional foods," CRC Press. DOI: DOI:

Barsanti, L., and Gualtieri, P. (2014). "Algae: anatomy, biochemistry, and biotechnology," CRC press. DOI: DOI:

Becker, W. (2004). 18 microalgae in human and animal nutrition. In "Handbook of microalgal culture: biotechnology and applied phycology", Vol. 312. Wiley Online Library. DOI:

Behrens, p. w., and Kyle, D. J. J. J. o. F. L. (1996). Microalgae as a source of fatty acids. 3, 259-272. DOI: DOI:

Ben-Amotz, A., and Avron, M. (1992). Dunaliella: physiology, biochemistry, and biotechnology. DOI:

Boateng, A. A., Mullen, C. A., Goldberg, N., Hicks, K. B., Jung, H.-J. G., Lamb, J. F. J. I., and research, e. c. (2008). Production of bio-oil from alfalfa stems by fluidized-bed fast pyrolysis. 47, 4115-4122. DOI: DOI:

Bonjouklian, R., Smitka, T. A., Doolin, L. E., Molloy, R. M., Debono, M., Shaffer, S. A., Moore, R. E., Stewart, J. B., and Patterson, G. M. J. T. (1991). Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. 47, 7739-7750. DOI: DOI:

Borowitzka, M. A. (1999). Commercial production of microalgae: ponds, tanks, and fermenters. In "Progress in industrial microbiology", Vol. 35, pp. 313-321. Elsevier. DOI: DOI:

Borowitzka, M. A. J. J. o. A. P. (1995). Microalgae as sources of pharmaceuticals and other biologically active compounds. 7, 3-15.

Borowitzka, M. J. A. J. B. (1988). Microalgae as sources of essential fatty acids. 1, 58-62. DOI: DOI:

Brennan, L., Owende, P. J. R., and reviews, s. e. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. 14, 557-577. DOI: DOI:

Brossard, N., Pachiaudi, C., Croset, M., Normand, S., Lecerf, J., Chirouze, V., Riou, J., Tayot, J., and Lagarde, M. J. A. b. (1994). Stable isotope tracer and gas-chromatography combustion isotope ratio mass spectrometry to study the in vivo compartmental metabolism of docosahexaenoic acid. 220, 192-199. DOI: DOI:

Brown, M., Jeffrey, S., Volkman, J., and Dunstan, G. J. A. (1997). Nutritional properties of microalgae for mariculture. 151, 315-331. DOI: DOI:

Canela, A. P. R., Rosa, P. T., Marques, M. O., Meireles, M. A. A. J. I., and research, e. c. (2002). Supercritical fluid extraction of fatty acids and carotenoids from the microalgae Spirulina maxima. 41, 3012-3018. DOI: DOI:

Certik, M., Shimizu, S. J. J. o. b., and bioengineering (1999). Biosynthesis and regulation of microbial polyunsaturated fatty acid production. 87, 1-14. DOI: DOI:

Chang, E.-H., and Yang, S.-S. J. B. B. o. A. S. (2003). Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. 44.

Chauhan, V., Marwah, J., and Bagchi, S. J. N. p. (1992). Effect of an antibiotic from Oscillatoria sp. on phytoplankters, higher plants and mice. 120, 251-257. DOI: DOI:

Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., and Chang, J.-S. J. B. t. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. 102, 71-81. DOI: DOI:

Cheng, J., Li, K., Yang, Z., Zhou, J., and Cen, K. J. B. t. (2016). Enhancing the growth rate and astaxanthin yield of Haematococcus pluvialis by nuclear irradiation and high concentration of carbon dioxide stress. 204, 49-54. DOI: DOI:

Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., Lee, D.-J., and Chang, J.-S. J. B. t. (2017). Microalgae biorefinery: high value products perspectives. 229, 53-62. DOI: DOI:

Chisti, Y. J. B. a. (2007). Biodiesel from microalgae. 25, 294-306. DOI: DOI:

Chojnacka, K., and Marquez-Rocha, F.-J. J. B. (2004). Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. 3, 21-34. DOI: DOI:

Chu, W.-L., See, Y.-C., and Phang, S.-M. J. J. o. A. P. (2009). Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. 21, 641-648. DOI: DOI:

Chu, W. L., Phang, S.-M., Miyakawa, K., Tosu, K. J. A. P. J. o. M. B., and Biotechnology (2002). Influence of irradiance and inoculum density on the pigmentation of Spirulina platensis. 10, 109-117.

Codd, G. J. W. S., and Technology (1995). Cyanobacterial toxins: occurrence, properties and biological significance. 32, 149-156. DOI: DOI:

Cohen, Z., and Cohen, S. J. J. o. t. A. O. C. S. (1991). Preparation of eicosapentaenoic acid (EPA) concentrate fromPorphyridium cruentum. 68, 16-19. DOI: DOI:

Colla, L. M., Reinehr, C. O., Reichert, C., and Costa, J. A. V. J. B. t. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. 98, 1489-1493. DOI: DOI:

Dawson, H. N., Burlingame, R., and Cannons, A. C. J. C. m. (1997). Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. 35, 356-362. DOI: DOI:

De-Bashan, L. E., and Bashan, Y. J. B. t. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. 101, 1611-1627. DOI: DOI:

De-Bashan, L. E., Moreno, M., Hernandez, J.-P., and Bashan, Y. J. W. r. (2002). Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. 36, 2941-2948. DOI: DOI:

De Morais, M. G., and Costa, J. A. V. J. J. o. b. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. 129, 439-445. DOI: DOI:

de Oliveira Rangel-Yagui, C., Danesi, E. D. G., de Carvalho, J. C. M., and Sato, S. J. B. t. (2004). Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. 92, 133-141. DOI: DOI:

De Pauw, N., Morales, J., and Persoone, G. J. H. (1984). Mass culture of microalgae in aquaculture systems: progress and constraints. 116, 121-134. DOI: DOI:

de Souza Berlinck, R. G. J. F. d. C. o. N. P. i. t. C. o. O. N. P. (1995). Some aspects of guanidine secondary metabolites. 119-295. DOI: DOI:

Del Campo, J. A., García-González, M., Guerrero, M. G. J. A. m., and biotechnology (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. 74, 1163-1174. DOI: DOI:

Dellert, S. F., Nowicki, M. J., Farrell, M. K., Delente, J., Heubi, J. E. J. J. o. p. g., and nutrition (1997). The 13C-xylose breath test for the diagnosis of small bowel bacterial overgrowth in children. 25, 153-158. DOI: DOI:

Dey, B., Lerner, D. L., Lusso, P., Boyd, M. R., Elder, J. H., and Berger, E. A. J. J. o. v. (2000). Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. 74, 4562-4569. DOI: DOI:

Doucha, J., Straka, F., and Lívanský, K. J. J. o. A. P. (2005). Utilization of flue gas for cultivation of microalgae Chlorella sp.) in an outdoor open thin-layer photobioreactor. 17, 403-412. DOI: DOI:

Fernández, F. G. A., Alı́as, C. B., López, M. a. C. G. a.-M., Sevilla, J. M. F., González, M. a. J. I., Gómez, R. N., and Grima, E. M. J. B. E. (2003). Assessment of the production of 13C labeled compounds from phototrophic microalgae at laboratory scale. 20, 149-162. DOI: DOI:

Gavrilescu, M., and Chisti, Y. J. B. a. (2005). Biotechnology—a sustainable alternative for chemical industry. 23, 471-499. DOI: DOI:

Goyal, H., Seal, D., Saxena, R. J. R., and reviews, s. e. (2008). Bio-fuels from thermochemical conversion of renewable resources: a review. 12, 504-517. DOI: DOI:

Grima, E. M., Belarbi, E.-H., Fernández, F. A., Medina, A. R., and Chisti, Y. J. B. a. (2003). Recovery of microalgal biomass and metabolites: process options and economics. 20, 491-515. DOI: DOI:

Gross, E. M., Wolk, C. P., and Jüttner, F. J. J. o. P. (1991). Fischerellin, a new allelochemical from the freshwater cyanobacterium fischerella muscicola 1. 27, 686-692. DOI: DOI:

Guerin, M., Huntley, M. E., and Olaizola, M. J. T. i. B. (2003). Haematococcus astaxanthin: applications for human health and nutrition. 21, 210-216. DOI: DOI:

He, H.-Z., Li, H.-B., Chen, F. J. A., and chemistry, b. (2005). Determination of vitamin B 1 in seawater and microalgal fermentation media by high-performance liquid chromatography with fluorescence detection. 383, 875-879. DOI: DOI:

Hejazi, M. A., and Wijffels, R. H. J. T. i. b. (2004). Milking of microalgae. 22, 189-194. DOI: DOI:

Hills, C., and Nakamura, H. (1978). "Food from sunlight. Planetary survival for hungry people. How to grow edible algae and establish a profitable aquaculture," University of the Trees Press.

Hsueh, H., Chu, H., and Yu, S.-T. J. C. (2007). A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. 66, 878-886. DOI: DOI:

Huleihel, M., Ishanu, V., Tal, J., and Arad, S. M. J. J. o. a. p. (2001). Antiviral effect of red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. 13, 127-134. DOI: DOI:

Huntley, M. E., Redalje, D. G. J. M., and change, a. s. f. g. (2007). CO 2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. 12, 573-608. DOI: DOI:

Ip, P.-F., and Chen, F. J. P. b. (2005). Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. 40, 3491-3496. DOI: DOI:

Ismail, M. J. B. i. t. c. e., Kuala Lumpur: University of Malaya Maritime Research Centre (2004). Phytoplankton and heavy metal contamination in the marine environment. 15-96.

Iwamoto, H. J. H. o. m. c. b., and phycology, a. (2004). Industrial production of microalgal cell-mass and secondary products-major industrial species. 255, 263.

Iwasaki, I., Hu, Q., Kurano, N., Miyachi, S. J. J. o. P., and Biology, P. B. (1998). Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a ‘high-CO2’tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. 44, 184-190. DOI: DOI:

Jin, E.-S., Polle, J. E., Lee, H.-K., Hyun, S.-M., Chang, M. J. J. o. m., and biotechnology (2003). Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. 13, 165-174.

Kadam, K. L. J. E. (2002). Environmental implications of power generation via coal-microalgae cofiring. 27, 905-922. DOI: DOI:

Katircioglu, H., Beyatli, Y., Aslim, B., Yüksekdag, Z., and Atici, T. J. M. (2006). Screening for antimicrobial agent production of some freshwater. 2. DOI: DOI:

Laliberte, G., Lessard, P., De La Noüe, J., and Sylvestre, S. J. B. T. (1997). Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. 59, 227-233. DOI: DOI:

Lammens, T., Franssen, M., Scott, E., Sanders, J. J. B., and Bioenergy (2012). Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. 44, 168-181. DOI: DOI:

Lau, A. F., Siedlecki, J., Anleitner, J., Patterson, G. M., Caplan, F. R., and Moore, R. E. J. P. m. (1993). Inhibition of reverse transcriptase activity by extracts of cultured blue-green algae (Cyanophyta). 59, 148-151. DOI: DOI:

Lee, Y.-K. J. J. o. A. P. (1997). Commercial production of microalgae in the Asia-Pacific rim. 9, 403-411.

Lehmann, J. J. N. (2007). A handful of carbon. 447, 143-144. DOI: DOI:

Lembcke, B., Braden, B., and Caspary, W. J. G. (1996). Exocrine pancreatic insufficiency: accuracy and clinical value of the uniformly labelled 13C-Hiolein breath test. 39, 668-674. DOI: DOI:

Li, Y., Horsman, M., Wu, N., Lan, C. Q., and Dubois‐Calero, N. J. B. p. (2008). Biofuels from microalgae. 24, 815-820. DOI: DOI:

Liang, S., Liu, X., Chen, F., and Chen, Z. (2004). Current microalgal health food R & D activities in China. In "Asian pacific phycology in the 21st century: Prospects and challenges", pp. 45-48. Springer. DOI: DOI:

Lim, S.-L., Chu, W.-L., and Phang, S.-M. J. B. t. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. 101, 7314-7322. DOI: DOI:

Marris, E. (2006). Black is the new green. Nature Publishing Group. DOI: DOI:

Mata, T. M., Martins, A. A., Caetano, N. S. J. R., and reviews, s. e. (2010). Microalgae for biodiesel production and other applications: a review. 14, 217-232. DOI: DOI:

Maxwell, E. L., Folger, A. G., and Hogg, S. E. (1985). "Resource evaluation and site selection for microalgae production systems." Solar Energy Research Inst., Golden, CO (USA). DOI: DOI:

Metting, F. J. J. o. i. m. (1996). Biodiversity and application of microalgae. 17, 477-489. DOI: DOI:

Moheimani, N. R. (2005). The culture of coccolithophorid algae for carbon dioxide bioremediation, Murdoch University.

Moreno-Garcia, L., Adjallé, K., Barnabé, S., Raghavan, G. J. R., and Reviews, S. E. (2017). Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. 76, 493-506. DOI: DOI:

Muller-Feuga, A. J. J. o. a. p. (2000). The role of microalgae in aquaculture: situation and trends. 12, 527-534. DOI: DOI:

Munoz, R., and Guieysse, B. J. W. r. (2006). Algal–bacterial processes for the treatment of hazardous contaminants: a review. 40, 2799-2815. DOI: DOI:

Mustafa, E.-M., Phang, S.-M., and Chu, W.-L. J. J. o. a. p. (2012). Use of an algal consortium of five algae in the treatment of landfill leachate using the high-rate algal pond system. 24, 953-963. DOI: DOI:

Nigam, P. S., Singh, A. J. P. i. e., and science, c. (2011). Production of liquid biofuels from renewable resources. 37, 52-68. DOI: DOI:

Ogbonda, K. H., Aminigo, R. E., and Abu, G. O. J. B. t. (2007). Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. 98, 2207-2211. DOI: DOI:

Ogbonna, J. C., Yoshizawa, H., and Tanaka, H. J. J. o. A. P. (2000). Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. 12, 277-284. DOI: DOI:

Oh, H. M., Choi, A.-R., Mheen, T. I. J. K. J. o. M., and Biotechnology (2003). High-value materials from microalgae= 미세조류 유래 고부가 유용물질. 31, 95-102.

Okuyama, H. J. P. o. t. S. f. E. B., and Medicine (1992). Minimum requirements of n-3 and n-6 essential fatty acids for the function of the central nervous system and for the prevention of chronic disease. 200, 174-176. DOI: DOI:

Olguı́n, E. J. J. B. a. (2003). Phycoremediation: key issues for cost-effective nutrient removal processes. 22, 81-91. DOI: DOI:

Oswald, W. J. J. W. S., and Technology (1991). Introduction to advanced integrated wastewater ponding systems. 24, 1. DOI: DOI:

Perales-Vela, H. V., Peña-Castro, J. M., and Canizares-Villanueva, R. O. J. C. (2006). Heavy metal detoxification in eukaryotic microalgae. 64, 1-10. DOI: DOI:

Phang, S., Chui, Y., Kumaran, G., Jeyaratnam, S., and Hashim, M. J. P. M. i. E. B. S.-V., Hong Kong (2001). High rate algal ponds for treatment of wastewater: a case study for the rubber industry. 51-76.

Phang, S., Miah, M., Yeoh, B., and Hashim, M. J. J. o. A. P. (2000). Spirulina cultivation in digested sago starch factory wastewater. 12, 395-400. DOI: DOI:

Praveenkumar, R., Lee, K., Lee, J., and Oh, Y.-K. J. G. C. (2015). Breaking dormancy: an energy-efficient means of recovering astaxanthin from microalgae. 17, 1226-1234. DOI: DOI:

Priyadarshani, I., and Rath, B. J. J. o. A. B. U. (2012). Commercial and industrial applications of micro algae–A review. 3, 89-100.

Pulz, O., Gross, W. J. A. m., and biotechnology (2004). Valuable products from biotechnology of microalgae. 65, 635-648. DOI: DOI:

Radmer, R. J. J. B. (1996). Algal diversity and commercial algal products. 46, 263-270. DOI: DOI:

Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S., and Rengasamy, R. J. C. r. i. m. (2008). A perspective on the biotechnological potential of microalgae. 34, 77-88. DOI: DOI:

Richmond, A. (2004). "Handbook of microalgal culture: biotechnology and applied phycology," Wiley Online Library.

Rinehart, K. L., Namikoshi, M., and Choi, B. W. J. J. o. a. p. (1994). Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). 6, 159-176. DOI: DOI:

Rosenberg, J. N., Oyler, G. A., Wilkinson, L., and Betenbaugh, M. J. J. C. o. i. B. (2008). A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. 19, 430-436. DOI: DOI:

Ruiz-Marin, A., Mendoza-Espinosa, L. G., and Stephenson, T. J. B. t. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. 101, 58-64. DOI: DOI:

Sajilata, M., Singhal, R., and Kamat, M. J. F. C. (2008). Fractionation of lipids and purification of γ-linolenic acid (GLA) from Spirulina platensis. 109, 580-586. DOI: DOI:

Sakai, N., Sakamoto, Y., Kishimoto, N., Chihara, M., Karube, I. J. E. C., and Management (1995). Chlorella strains from hot springs tolerant to high temperature and high CO2. 36, 693-696. DOI: DOI:

Schwartz, R. E., Hirsch, C. F., Sesin, D. F., Flor, J. E., Chartrain, M., Fromtling, R. E., Harris, G. H., Salvatore, M. J., Liesch, J. M., Yudin, K. J. J. o. i. m., and biotechnology (1990). Pharmaceuticals from cultured algae. 5, 113-123. DOI: DOI:

Seo, J. Y., Praveenkumar, R., Kim, B., Seo, J.-C., Park, J.-Y., Na, J.-G., Jeon, S. G., Park, S. B., Lee, K., and Oh, Y.-K. J. G. C. (2016). Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant-decorated Fe 3 O 4 nanoparticles. 18, 3981-3989. DOI: DOI:

Sheehan, J., Dunahay, T., Benemann, J., and Roessler, P. (1998). "Look back at the US department of energy's aquatic species program: biodiesel from algae; close-out report." National Renewable Energy Lab., Golden, CO.(US). DOI: DOI:

Shin, S.-E., Lim, J.-M., Koh, H. G., Kim, E. K., Kang, N. K., Jeon, S., Kwon, S., Shin, W.-S., Lee, B., and Hwangbo, K. J. S. R. (2016). CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. 6, 1-15. DOI: DOI:

Sigamani, S., Ramamurthy, D., and Natarajan, H. J. J. A. P. S. (2016). A review on potential biotechnological applications of microalgae. 6, 179-184. DOI: DOI:

Singh, A., Nigam, P. S., and Murphy, J. D. J. B. t. (2011). Mechanism and challenges in commercialisation of algal biofuels. 102, 26-34. DOI: DOI:

Sithranga Boopathy, N., and Kathiresan, K. J. J. o. o. (2010). Anticancer drugs from marine flora: an overview. 2010. DOI: DOI:

Smidt, C. (2000). Effects of lifepak® supplementation on antioxidant status and ldl-oxidation in healthy non-smokers.

Soletto, D., Binaghi, L., Lodi, A., Carvalho, J., and Converti, A. J. A. (2005). Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. 243, 217-224. DOI: DOI:

Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. J. J. o. b., and bioengineering (2006). Commercial applications of microalgae. 101, 87-96. DOI: DOI:

Stephens, E., Ross, I. L., King, Z., Mussgnug, J. H., Kruse, O., Posten, C., Borowitzka, M. A., and Hankamer, B. J. N. b. (2010). An economic and technical evaluation of microalgal biofuels. 28, 126-128. DOI: DOI:

Stolz, P., Obermayer, B. J. C., and toiletries (2005). Manufacturing microalgae for skin care. 120, 99-106.

Suganya, T., Varman, M., Masjuki, H., Renganathan, S. J. R., and Reviews, S. E. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. 55, 909-941. DOI: DOI:

Vannini, C., Domingo, G., Marsoni, M., De Mattia, F., Labra, M., Castiglioni, S., and Bracale, M. J. A. t. (2011). Effects of a complex mixture of therapeutic drugs on unicellular algae Pseudokirchneriella subcapitata. 101, 459-465. DOI: DOI:

Vonshak, A. (1997). "Spirulina platensis arthrospira: physiology, cell-biology and biotechnology," CRC press. DOI: DOI:

Waldenstedt, L., Inborr, J., Hansson, I., Elwinger, K. J. A. F. S., and Technology (2003). Effects of astaxanthin-rich algal meal (Haematococcus pluvalis) on growth performance, caecal campylobacter and clostridial counts and tissue astaxanthin concentration of broiler chickens. 108, 119-132. DOI: DOI:

Wang, B., Li, Y., Wu, N., Lan, C. Q. J. A. m., and biotechnology (2008). CO 2 bio-mitigation using microalgae. 79, 707-718. DOI: DOI:

Wang, J., Wang, X.-D., Zhao, X.-Y., Liu, X., Dong, T., and Wu, F.-A. J. B. t. (2015). From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids. 184, 405-414. DOI: DOI:

Wen, Z.-Y., and Chen, F. J. B. a. (2003). Heterotrophic production of eicosapentaenoic acid by microalgae. 21, 273-294. DOI: DOI:

Yamaguchi, K. J. J. o. a. p. (1996). Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. 8, 487-502. DOI: DOI:




How to Cite

BASHIR, M., FAROOQ, M., KHALID, S., & ALI, Q. (2022). THE ROLE OF MICROALGAE IN DIFFERENT BIOTECHNOLOGY APPLICATIONS . Bulletin of Biological and Allied Sciences Research, 2022(1), 25.

Most read articles by the same author(s)