THE ROLE OF MICROALGAE IN DIFFERENT BIOTECHNOLOGY APPLICATIONS
DOI:
https://doi.org/10.54112/bbasr.v2022i1.25Keywords:
Microalgae, Biotechnology applications, microalgae biomass, antiviral, antimicrobial, anti-cancer, microalgae productsAbstract
Microalgae's role as an energy source has indeed been extensively studied. However, due to the high cost of producing microalgae biomass, its use as an energy source in the feedstock cannot guarantee its scalability or economic sustainability. Microalgae biomass can be co-processed with other bio-refinery applications to reduce costs and increase sustainability. As a result, it raises the need to evaluate the role of microalgae-biomass beyond its current use. Microalgae have unique characteristics that make them suitable as alternate feedstock for various bio-refinery applications. Microalgae have a one-of-a-kind ability to be used in industrial as well as environmental applications. As a result, this review aims to broaden the area of incorporating microalgae with the other biotechnology applications to improve their long-term viability. Microalgae as just a feed for animals & aquaculture, cosmetics, environmental, fertilizers and medicine, and other biotechnological applications are thoroughly examined. It also discusses the challenges, opportunities, advances, and prospects for microalgae. According to the findings, study funding and a change in microalgae concentration from biofuels produced to biorefinery byproducts can identify microalgae as a potential feedstock. Furthermore, to cover the costs of microalgae-biomass-processing, technology integration is unavoidable. It is expected that even this review would've been beneficial in explaining the future role of microalgae in biorefinery applications. Microalgae have special features that can be used in environmental and industrial applications. Animal & aqua-culture-feed, fertilizer, pharmaceuticals, or cosmetic items are all possible uses for microalgae. Therefore, it necessitates that researchers concentrate on algae co-processing. A unified bio-refinery strategy could be used to increase the value of microalgae-biomass.
Downloads
References
Apt, K. E., and Behrens, P. W. J. J. o. p. (1999). Commercial developments in microalgal biotechnology. 35, 215-226. DOI: https://doi.org/10.1046/j.1529-8817.1999.3520215.x DOI: https://doi.org/10.1046/j.1529-8817.1999.3520215.x
Apt, K. E., Grossman, A., Kroth-Pancic, P. J. M., and MGG, G. G. (1996). Stable nuclear transformation of the diatom Phaeodactylum tricornutum. 252, 572-579. DOI: https://doi.org/10.1007/BF02172403 DOI: https://doi.org/10.1007/BF02172403
Ayehunie, S., Belay, A., Baba, T. W., Ruprecht, R. M. J. J. o. a. i. d. s., and Association, h. r. o. p. o. t. I. R. (1998). Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). 18, 7-12. DOI: https://doi.org/10.1097/00042560-199805010-00002 DOI: https://doi.org/10.1097/00042560-199805010-00002
Babu, B. J. B., Bioproducts, and economy, B. I. f. a. s. (2008). Biomass pyrolysis: a state‐of‐the‐art review. 2, 393-414. DOI: https://doi.org/10.1002/bbb.92 DOI: https://doi.org/10.1002/bbb.92
Barrow, C., and Shahidi, F. (2007). "Marine nutraceuticals and functional foods," CRC Press. DOI: https://doi.org/10.1201/9781420015812 DOI: https://doi.org/10.1201/9781420015812
Barsanti, L., and Gualtieri, P. (2014). "Algae: anatomy, biochemistry, and biotechnology," CRC press. DOI: https://doi.org/10.1002/9780470995280.ch18 DOI: https://doi.org/10.1002/9780470995280.ch18
Becker, W. (2004). 18 microalgae in human and animal nutrition. In "Handbook of microalgal culture: biotechnology and applied phycology", Vol. 312. Wiley Online Library. DOI: https://doi.org/10.1111/j.1745-4522.1996.tb00073.x
Behrens, p. w., and Kyle, D. J. J. J. o. F. L. (1996). Microalgae as a source of fatty acids. 3, 259-272. DOI: https://doi.org/10.1021/ie800096g DOI: https://doi.org/10.1111/j.1745-4522.1996.tb00073.x
Ben-Amotz, A., and Avron, M. (1992). Dunaliella: physiology, biochemistry, and biotechnology. DOI: https://doi.org/10.1016/S0040-4020(01)81932-3
Boateng, A. A., Mullen, C. A., Goldberg, N., Hicks, K. B., Jung, H.-J. G., Lamb, J. F. J. I., and research, e. c. (2008). Production of bio-oil from alfalfa stems by fluidized-bed fast pyrolysis. 47, 4115-4122. DOI: https://doi.org/10.1007/BF00003544 DOI: https://doi.org/10.1021/ie800096g
Bonjouklian, R., Smitka, T. A., Doolin, L. E., Molloy, R. M., Debono, M., Shaffer, S. A., Moore, R. E., Stewart, J. B., and Patterson, G. M. J. T. (1991). Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. 47, 7739-7750. DOI: https://doi.org/10.1016/S0040-4020(01)81932-3 DOI: https://doi.org/10.1016/S0040-4020(01)81932-3
Borowitzka, M. A. (1999). Commercial production of microalgae: ponds, tanks, and fermenters. In "Progress in industrial microbiology", Vol. 35, pp. 313-321. Elsevier. DOI: https://doi.org/10.1016/S0079-6352(99)80123-4 DOI: https://doi.org/10.1016/S0079-6352(99)80123-4
Borowitzka, M. A. J. J. o. A. P. (1995). Microalgae as sources of pharmaceuticals and other biologically active compounds. 7, 3-15.
Borowitzka, M. J. A. J. B. (1988). Microalgae as sources of essential fatty acids. 1, 58-62. DOI: https://doi.org/10.1007/BF00003544 DOI: https://doi.org/10.1007/BF00003544
Brennan, L., Owende, P. J. R., and reviews, s. e. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. 14, 557-577. DOI: https://doi.org/10.1016/j.rser.2009.10.009 DOI: https://doi.org/10.1016/j.rser.2009.10.009
Brossard, N., Pachiaudi, C., Croset, M., Normand, S., Lecerf, J., Chirouze, V., Riou, J., Tayot, J., and Lagarde, M. J. A. b. (1994). Stable isotope tracer and gas-chromatography combustion isotope ratio mass spectrometry to study the in vivo compartmental metabolism of docosahexaenoic acid. 220, 192-199. DOI: https://doi.org/10.1006/abio.1994.1318 DOI: https://doi.org/10.1006/abio.1994.1318
Brown, M., Jeffrey, S., Volkman, J., and Dunstan, G. J. A. (1997). Nutritional properties of microalgae for mariculture. 151, 315-331. DOI: https://doi.org/10.1016/S0044-8486(96)01501-3 DOI: https://doi.org/10.1016/S0044-8486(96)01501-3
Canela, A. P. R., Rosa, P. T., Marques, M. O., Meireles, M. A. A. J. I., and research, e. c. (2002). Supercritical fluid extraction of fatty acids and carotenoids from the microalgae Spirulina maxima. 41, 3012-3018. DOI: https://doi.org/10.1021/ie010469i DOI: https://doi.org/10.1021/ie010469i
Certik, M., Shimizu, S. J. J. o. b., and bioengineering (1999). Biosynthesis and regulation of microbial polyunsaturated fatty acid production. 87, 1-14. DOI: https://doi.org/10.1016/S1389-1723(99)80001-2 DOI: https://doi.org/10.1016/S1389-1723(99)80001-2
Chang, E.-H., and Yang, S.-S. J. B. B. o. A. S. (2003). Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. 44.
Chauhan, V., Marwah, J., and Bagchi, S. J. N. p. (1992). Effect of an antibiotic from Oscillatoria sp. on phytoplankters, higher plants and mice. 120, 251-257. DOI: https://doi.org/10.1111/j.1469-8137.1992.tb05661.x DOI: https://doi.org/10.1111/j.1469-8137.1992.tb05661.x
Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., and Chang, J.-S. J. B. t. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. 102, 71-81. DOI: https://doi.org/10.1016/j.biortech.2010.06.159 DOI: https://doi.org/10.1016/j.biortech.2010.06.159
Cheng, J., Li, K., Yang, Z., Zhou, J., and Cen, K. J. B. t. (2016). Enhancing the growth rate and astaxanthin yield of Haematococcus pluvialis by nuclear irradiation and high concentration of carbon dioxide stress. 204, 49-54. DOI: https://doi.org/10.1016/j.biortech.2015.12.076 DOI: https://doi.org/10.1016/j.biortech.2015.12.076
Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., Lee, D.-J., and Chang, J.-S. J. B. t. (2017). Microalgae biorefinery: high value products perspectives. 229, 53-62. DOI: https://doi.org/10.1016/j.biortech.2017.01.006 DOI: https://doi.org/10.1016/j.biortech.2017.01.006
Chisti, Y. J. B. a. (2007). Biodiesel from microalgae. 25, 294-306. DOI: https://doi.org/10.1016/j.biotechadv.2007.02.001 DOI: https://doi.org/10.1016/j.biotechadv.2007.02.001
Chojnacka, K., and Marquez-Rocha, F.-J. J. B. (2004). Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. 3, 21-34. DOI: https://doi.org/10.3923/biotech.2004.21.34 DOI: https://doi.org/10.3923/biotech.2004.21.34
Chu, W.-L., See, Y.-C., and Phang, S.-M. J. J. o. A. P. (2009). Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. 21, 641-648. DOI: https://doi.org/10.1007/s10811-008-9396-3 DOI: https://doi.org/10.1007/s10811-008-9396-3
Chu, W. L., Phang, S.-M., Miyakawa, K., Tosu, K. J. A. P. J. o. M. B., and Biotechnology (2002). Influence of irradiance and inoculum density on the pigmentation of Spirulina platensis. 10, 109-117.
Codd, G. J. W. S., and Technology (1995). Cyanobacterial toxins: occurrence, properties and biological significance. 32, 149-156. DOI: https://doi.org/10.2166/wst.1995.0177 DOI: https://doi.org/10.2166/wst.1995.0177
Cohen, Z., and Cohen, S. J. J. o. t. A. O. C. S. (1991). Preparation of eicosapentaenoic acid (EPA) concentrate fromPorphyridium cruentum. 68, 16-19. DOI: https://doi.org/10.1007/BF02660301 DOI: https://doi.org/10.1007/BF02660301
Colla, L. M., Reinehr, C. O., Reichert, C., and Costa, J. A. V. J. B. t. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. 98, 1489-1493. DOI: https://doi.org/10.1016/j.biortech.2005.09.030 DOI: https://doi.org/10.1016/j.biortech.2005.09.030
Dawson, H. N., Burlingame, R., and Cannons, A. C. J. C. m. (1997). Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. 35, 356-362. DOI: https://doi.org/10.1007/s002849900268 DOI: https://doi.org/10.1007/s002849900268
De-Bashan, L. E., and Bashan, Y. J. B. t. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. 101, 1611-1627. DOI: https://doi.org/10.1016/j.biortech.2009.09.043 DOI: https://doi.org/10.1016/j.biortech.2009.09.043
De-Bashan, L. E., Moreno, M., Hernandez, J.-P., and Bashan, Y. J. W. r. (2002). Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. 36, 2941-2948. DOI: https://doi.org/10.1016/S0043-1354(01)00522-X DOI: https://doi.org/10.1016/S0043-1354(01)00522-X
De Morais, M. G., and Costa, J. A. V. J. J. o. b. (2007). Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. 129, 439-445. DOI: https://doi.org/10.1016/j.jbiotec.2007.01.009 DOI: https://doi.org/10.1016/j.jbiotec.2007.01.009
de Oliveira Rangel-Yagui, C., Danesi, E. D. G., de Carvalho, J. C. M., and Sato, S. J. B. t. (2004). Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. 92, 133-141. DOI: https://doi.org/10.1016/j.biortech.2003.09.002 DOI: https://doi.org/10.1016/j.biortech.2003.09.002
De Pauw, N., Morales, J., and Persoone, G. J. H. (1984). Mass culture of microalgae in aquaculture systems: progress and constraints. 116, 121-134. DOI: https://doi.org/10.1007/978-94-009-6560-7_19 DOI: https://doi.org/10.1007/978-94-009-6560-7_19
de Souza Berlinck, R. G. J. F. d. C. o. N. P. i. t. C. o. O. N. P. (1995). Some aspects of guanidine secondary metabolites. 119-295. DOI: https://doi.org/10.1007/978-3-7091-9363-1_2 DOI: https://doi.org/10.1007/978-3-7091-9363-1_2
Del Campo, J. A., García-González, M., Guerrero, M. G. J. A. m., and biotechnology (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. 74, 1163-1174. DOI: https://doi.org/10.1007/s00253-007-0844-9 DOI: https://doi.org/10.1007/s00253-007-0844-9
Dellert, S. F., Nowicki, M. J., Farrell, M. K., Delente, J., Heubi, J. E. J. J. o. p. g., and nutrition (1997). The 13C-xylose breath test for the diagnosis of small bowel bacterial overgrowth in children. 25, 153-158. DOI: https://doi.org/10.1097/00005176-199708000-00005 DOI: https://doi.org/10.1097/00005176-199708000-00005
Dey, B., Lerner, D. L., Lusso, P., Boyd, M. R., Elder, J. H., and Berger, E. A. J. J. o. v. (2000). Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. 74, 4562-4569. DOI: https://doi.org/10.1128/.74.10.4562-4569.2000 DOI: https://doi.org/10.1128/JVI.74.10.4562-4569.2000
Doucha, J., Straka, F., and Lívanský, K. J. J. o. A. P. (2005). Utilization of flue gas for cultivation of microalgae Chlorella sp.) in an outdoor open thin-layer photobioreactor. 17, 403-412. DOI: https://doi.org/10.1007/s10811-005-8701-7 DOI: https://doi.org/10.1007/s10811-005-8701-7
Fernández, F. G. A., Alı́as, C. B., López, M. a. C. G. a.-M., Sevilla, J. M. F., González, M. a. J. I., Gómez, R. N., and Grima, E. M. J. B. E. (2003). Assessment of the production of 13C labeled compounds from phototrophic microalgae at laboratory scale. 20, 149-162. DOI: https://doi.org/10.1016/S1389-0344(03)00041-8 DOI: https://doi.org/10.1016/S1389-0344(03)00041-8
Gavrilescu, M., and Chisti, Y. J. B. a. (2005). Biotechnology—a sustainable alternative for chemical industry. 23, 471-499. DOI: https://doi.org/10.1016/j.biotechadv.2005.03.004 DOI: https://doi.org/10.1016/j.biotechadv.2005.03.004
Goyal, H., Seal, D., Saxena, R. J. R., and reviews, s. e. (2008). Bio-fuels from thermochemical conversion of renewable resources: a review. 12, 504-517. DOI: https://doi.org/10.1016/j.rser.2006.07.014 DOI: https://doi.org/10.1016/j.rser.2006.07.014
Grima, E. M., Belarbi, E.-H., Fernández, F. A., Medina, A. R., and Chisti, Y. J. B. a. (2003). Recovery of microalgal biomass and metabolites: process options and economics. 20, 491-515. DOI: https://doi.org/10.1016/S0734-9750(02)00050-2 DOI: https://doi.org/10.1016/S0734-9750(02)00050-2
Gross, E. M., Wolk, C. P., and Jüttner, F. J. J. o. P. (1991). Fischerellin, a new allelochemical from the freshwater cyanobacterium fischerella muscicola 1. 27, 686-692. DOI: https://doi.org/10.1111/j.0022-3646.1991.00686.x DOI: https://doi.org/10.1111/j.0022-3646.1991.00686.x
Guerin, M., Huntley, M. E., and Olaizola, M. J. T. i. B. (2003). Haematococcus astaxanthin: applications for human health and nutrition. 21, 210-216. DOI: https://doi.org/10.1016/S0167-7799(03)00078-7 DOI: https://doi.org/10.1016/S0167-7799(03)00078-7
He, H.-Z., Li, H.-B., Chen, F. J. A., and chemistry, b. (2005). Determination of vitamin B 1 in seawater and microalgal fermentation media by high-performance liquid chromatography with fluorescence detection. 383, 875-879. DOI: https://doi.org/10.1007/s00216-005-0062-1 DOI: https://doi.org/10.1007/s00216-005-0062-1
Hejazi, M. A., and Wijffels, R. H. J. T. i. b. (2004). Milking of microalgae. 22, 189-194. DOI: https://doi.org/10.1016/j.tibtech.2004.02.009 DOI: https://doi.org/10.1016/j.tibtech.2004.02.009
Hills, C., and Nakamura, H. (1978). "Food from sunlight. Planetary survival for hungry people. How to grow edible algae and establish a profitable aquaculture," University of the Trees Press.
Hsueh, H., Chu, H., and Yu, S.-T. J. C. (2007). A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. 66, 878-886. DOI: https://doi.org/10.1016/j.chemosphere.2006.06.022 DOI: https://doi.org/10.1016/j.chemosphere.2006.06.022
Huleihel, M., Ishanu, V., Tal, J., and Arad, S. M. J. J. o. a. p. (2001). Antiviral effect of red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. 13, 127-134. DOI: https://doi.org/10.1023/A:1011178225912 DOI: https://doi.org/10.1023/A:1011178225912
Huntley, M. E., Redalje, D. G. J. M., and change, a. s. f. g. (2007). CO 2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. 12, 573-608. DOI: https://doi.org/10.1007/s11027-006-7304-1 DOI: https://doi.org/10.1007/s11027-006-7304-1
Ip, P.-F., and Chen, F. J. P. b. (2005). Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. 40, 3491-3496. DOI: https://doi.org/10.1016/j.procbio.2005.02.014 DOI: https://doi.org/10.1016/j.procbio.2005.02.014
Ismail, M. J. B. i. t. c. e., Kuala Lumpur: University of Malaya Maritime Research Centre (2004). Phytoplankton and heavy metal contamination in the marine environment. 15-96.
Iwamoto, H. J. H. o. m. c. b., and phycology, a. (2004). Industrial production of microalgal cell-mass and secondary products-major industrial species. 255, 263.
Iwasaki, I., Hu, Q., Kurano, N., Miyachi, S. J. J. o. P., and Biology, P. B. (1998). Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a ‘high-CO2’tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. 44, 184-190. DOI: https://doi.org/10.1016/S1011-1344(98)00140-7 DOI: https://doi.org/10.1016/S1011-1344(98)00140-7
Jin, E.-S., Polle, J. E., Lee, H.-K., Hyun, S.-M., Chang, M. J. J. o. m., and biotechnology (2003). Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. 13, 165-174.
Kadam, K. L. J. E. (2002). Environmental implications of power generation via coal-microalgae cofiring. 27, 905-922. DOI: https://doi.org/10.1016/S0360-5442(02)00025-7 DOI: https://doi.org/10.1016/S0360-5442(02)00025-7
Katircioglu, H., Beyatli, Y., Aslim, B., Yüksekdag, Z., and Atici, T. J. M. (2006). Screening for antimicrobial agent production of some freshwater. 2. DOI: https://doi.org/10.5580/17b8 DOI: https://doi.org/10.5580/17b8
Laliberte, G., Lessard, P., De La Noüe, J., and Sylvestre, S. J. B. T. (1997). Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. 59, 227-233. DOI: https://doi.org/10.1016/S0960-8524(96)00144-7 DOI: https://doi.org/10.1016/S0960-8524(96)00144-7
Lammens, T., Franssen, M., Scott, E., Sanders, J. J. B., and Bioenergy (2012). Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. 44, 168-181. DOI: https://doi.org/10.1016/j.biombioe.2012.04.021 DOI: https://doi.org/10.1016/j.biombioe.2012.04.021
Lau, A. F., Siedlecki, J., Anleitner, J., Patterson, G. M., Caplan, F. R., and Moore, R. E. J. P. m. (1993). Inhibition of reverse transcriptase activity by extracts of cultured blue-green algae (Cyanophyta). 59, 148-151. DOI: https://doi.org/10.1055/s-2006-959631 DOI: https://doi.org/10.1055/s-2006-959631
Lee, Y.-K. J. J. o. A. P. (1997). Commercial production of microalgae in the Asia-Pacific rim. 9, 403-411.
Lehmann, J. J. N. (2007). A handful of carbon. 447, 143-144. DOI: https://doi.org/10.1038/447143a DOI: https://doi.org/10.1038/447143a
Lembcke, B., Braden, B., and Caspary, W. J. G. (1996). Exocrine pancreatic insufficiency: accuracy and clinical value of the uniformly labelled 13C-Hiolein breath test. 39, 668-674. DOI: https://doi.org/10.1136/gut.39.5.668 DOI: https://doi.org/10.1136/gut.39.5.668
Li, Y., Horsman, M., Wu, N., Lan, C. Q., and Dubois‐Calero, N. J. B. p. (2008). Biofuels from microalgae. 24, 815-820. DOI: https://doi.org/10.1021/bp070371k DOI: https://doi.org/10.1021/bp070371k
Liang, S., Liu, X., Chen, F., and Chen, Z. (2004). Current microalgal health food R & D activities in China. In "Asian pacific phycology in the 21st century: Prospects and challenges", pp. 45-48. Springer. DOI: https://doi.org/10.1007/978-94-007-0944-7_7 DOI: https://doi.org/10.1007/978-94-007-0944-7_7
Lim, S.-L., Chu, W.-L., and Phang, S.-M. J. B. t. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. 101, 7314-7322. DOI: https://doi.org/10.1016/j.biortech.2010.04.092 DOI: https://doi.org/10.1016/j.biortech.2010.04.092
Marris, E. (2006). Black is the new green. Nature Publishing Group. DOI: https://doi.org/10.1038/442624a DOI: https://doi.org/10.1038/442624a
Mata, T. M., Martins, A. A., Caetano, N. S. J. R., and reviews, s. e. (2010). Microalgae for biodiesel production and other applications: a review. 14, 217-232. DOI: https://doi.org/10.1016/j.rser.2009.07.020 DOI: https://doi.org/10.1016/j.rser.2009.07.020
Maxwell, E. L., Folger, A. G., and Hogg, S. E. (1985). "Resource evaluation and site selection for microalgae production systems." Solar Energy Research Inst., Golden, CO (USA). DOI: https://doi.org/10.2172/5585709 DOI: https://doi.org/10.2172/5585709
Metting, F. J. J. o. i. m. (1996). Biodiversity and application of microalgae. 17, 477-489. DOI: https://doi.org/10.1007/BF01574779 DOI: https://doi.org/10.1007/BF01574779
Moheimani, N. R. (2005). The culture of coccolithophorid algae for carbon dioxide bioremediation, Murdoch University.
Moreno-Garcia, L., Adjallé, K., Barnabé, S., Raghavan, G. J. R., and Reviews, S. E. (2017). Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. 76, 493-506. DOI: https://doi.org/10.1016/j.rser.2017.03.024 DOI: https://doi.org/10.1016/j.rser.2017.03.024
Muller-Feuga, A. J. J. o. a. p. (2000). The role of microalgae in aquaculture: situation and trends. 12, 527-534. DOI: https://doi.org/10.1023/A:1008106304417 DOI: https://doi.org/10.1023/A:1008106304417
Munoz, R., and Guieysse, B. J. W. r. (2006). Algal–bacterial processes for the treatment of hazardous contaminants: a review. 40, 2799-2815. DOI: https://doi.org/10.1016/j.watres.2006.06.011 DOI: https://doi.org/10.1016/j.watres.2006.06.011
Mustafa, E.-M., Phang, S.-M., and Chu, W.-L. J. J. o. a. p. (2012). Use of an algal consortium of five algae in the treatment of landfill leachate using the high-rate algal pond system. 24, 953-963. DOI: https://doi.org/10.1007/s10811-011-9716-x DOI: https://doi.org/10.1007/s10811-011-9716-x
Nigam, P. S., Singh, A. J. P. i. e., and science, c. (2011). Production of liquid biofuels from renewable resources. 37, 52-68. DOI: https://doi.org/10.1016/j.pecs.2010.01.003 DOI: https://doi.org/10.1016/j.pecs.2010.01.003
Ogbonda, K. H., Aminigo, R. E., and Abu, G. O. J. B. t. (2007). Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. 98, 2207-2211. DOI: https://doi.org/10.1016/j.biortech.2006.08.028 DOI: https://doi.org/10.1016/j.biortech.2006.08.028
Ogbonna, J. C., Yoshizawa, H., and Tanaka, H. J. J. o. A. P. (2000). Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. 12, 277-284. DOI: https://doi.org/10.1023/A:1008188311681 DOI: https://doi.org/10.1023/A:1008188311681
Oh, H. M., Choi, A.-R., Mheen, T. I. J. K. J. o. M., and Biotechnology (2003). High-value materials from microalgae= 미세조류 유래 고부가 유용물질. 31, 95-102.
Okuyama, H. J. P. o. t. S. f. E. B., and Medicine (1992). Minimum requirements of n-3 and n-6 essential fatty acids for the function of the central nervous system and for the prevention of chronic disease. 200, 174-176. DOI: https://doi.org/10.3181/00379727-200-43412 DOI: https://doi.org/10.3181/00379727-200-43412
Olguı́n, E. J. J. B. a. (2003). Phycoremediation: key issues for cost-effective nutrient removal processes. 22, 81-91. DOI: https://doi.org/10.1016/S0734-9750(03)00130-7 DOI: https://doi.org/10.1016/S0734-9750(03)00130-7
Oswald, W. J. J. W. S., and Technology (1991). Introduction to advanced integrated wastewater ponding systems. 24, 1. DOI: https://doi.org/10.2166/wst.1991.0106 DOI: https://doi.org/10.2166/wst.1991.0106
Perales-Vela, H. V., Peña-Castro, J. M., and Canizares-Villanueva, R. O. J. C. (2006). Heavy metal detoxification in eukaryotic microalgae. 64, 1-10. DOI: https://doi.org/10.1016/j.chemosphere.2005.11.024 DOI: https://doi.org/10.1016/j.chemosphere.2005.11.024
Phang, S., Chui, Y., Kumaran, G., Jeyaratnam, S., and Hashim, M. J. P. M. i. E. B. S.-V., Hong Kong (2001). High rate algal ponds for treatment of wastewater: a case study for the rubber industry. 51-76.
Phang, S., Miah, M., Yeoh, B., and Hashim, M. J. J. o. A. P. (2000). Spirulina cultivation in digested sago starch factory wastewater. 12, 395-400. DOI: https://doi.org/10.1023/A:1008157731731 DOI: https://doi.org/10.1023/A:1008157731731
Praveenkumar, R., Lee, K., Lee, J., and Oh, Y.-K. J. G. C. (2015). Breaking dormancy: an energy-efficient means of recovering astaxanthin from microalgae. 17, 1226-1234. DOI: https://doi.org/10.1039/C4GC01413H DOI: https://doi.org/10.1039/C4GC01413H
Priyadarshani, I., and Rath, B. J. J. o. A. B. U. (2012). Commercial and industrial applications of micro algae–A review. 3, 89-100.
Pulz, O., Gross, W. J. A. m., and biotechnology (2004). Valuable products from biotechnology of microalgae. 65, 635-648. DOI: https://doi.org/10.1007/s00253-004-1647-x DOI: https://doi.org/10.1007/s00253-004-1647-x
Radmer, R. J. J. B. (1996). Algal diversity and commercial algal products. 46, 263-270. DOI: https://doi.org/10.2307/1312833 DOI: https://doi.org/10.2307/1312833
Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S., and Rengasamy, R. J. C. r. i. m. (2008). A perspective on the biotechnological potential of microalgae. 34, 77-88. DOI: https://doi.org/10.1080/10408410802086783 DOI: https://doi.org/10.1080/10408410802086783
Richmond, A. (2004). "Handbook of microalgal culture: biotechnology and applied phycology," Wiley Online Library. DOI: https://doi.org/10.1002/9780470995280
Rinehart, K. L., Namikoshi, M., and Choi, B. W. J. J. o. a. p. (1994). Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). 6, 159-176. DOI: https://doi.org/10.1007/BF02186070 DOI: https://doi.org/10.1007/BF02186070
Rosenberg, J. N., Oyler, G. A., Wilkinson, L., and Betenbaugh, M. J. J. C. o. i. B. (2008). A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. 19, 430-436. DOI: https://doi.org/10.1016/j.copbio.2008.07.008 DOI: https://doi.org/10.1016/j.copbio.2008.07.008
Ruiz-Marin, A., Mendoza-Espinosa, L. G., and Stephenson, T. J. B. t. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. 101, 58-64. DOI: https://doi.org/10.1016/j.biortech.2009.02.076 DOI: https://doi.org/10.1016/j.biortech.2009.02.076
Sajilata, M., Singhal, R., and Kamat, M. J. F. C. (2008). Fractionation of lipids and purification of γ-linolenic acid (GLA) from Spirulina platensis. 109, 580-586. DOI: https://doi.org/10.1016/j.foodchem.2008.01.005 DOI: https://doi.org/10.1016/j.foodchem.2008.01.005
Sakai, N., Sakamoto, Y., Kishimoto, N., Chihara, M., Karube, I. J. E. C., and Management (1995). Chlorella strains from hot springs tolerant to high temperature and high CO2. 36, 693-696. DOI: https://doi.org/10.1016/0196-8904(95)00100-R DOI: https://doi.org/10.1016/0196-8904(95)00100-R
Schwartz, R. E., Hirsch, C. F., Sesin, D. F., Flor, J. E., Chartrain, M., Fromtling, R. E., Harris, G. H., Salvatore, M. J., Liesch, J. M., Yudin, K. J. J. o. i. m., and biotechnology (1990). Pharmaceuticals from cultured algae. 5, 113-123. DOI: https://doi.org/10.1007/BF01573860 DOI: https://doi.org/10.1007/BF01573860
Seo, J. Y., Praveenkumar, R., Kim, B., Seo, J.-C., Park, J.-Y., Na, J.-G., Jeon, S. G., Park, S. B., Lee, K., and Oh, Y.-K. J. G. C. (2016). Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant-decorated Fe 3 O 4 nanoparticles. 18, 3981-3989. DOI: https://doi.org/10.1039/C6GC00904B DOI: https://doi.org/10.1039/C6GC00904B
Sheehan, J., Dunahay, T., Benemann, J., and Roessler, P. (1998). "Look back at the US department of energy's aquatic species program: biodiesel from algae; close-out report." National Renewable Energy Lab., Golden, CO.(US). DOI: https://doi.org/10.2172/15003040 DOI: https://doi.org/10.2172/15003040
Shin, S.-E., Lim, J.-M., Koh, H. G., Kim, E. K., Kang, N. K., Jeon, S., Kwon, S., Shin, W.-S., Lee, B., and Hwangbo, K. J. S. R. (2016). CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. 6, 1-15. DOI: https://doi.org/10.1038/srep27810 DOI: https://doi.org/10.1038/srep27810
Sigamani, S., Ramamurthy, D., and Natarajan, H. J. J. A. P. S. (2016). A review on potential biotechnological applications of microalgae. 6, 179-184. DOI: https://doi.org/10.7324/JAPS.2016.60829 DOI: https://doi.org/10.7324/JAPS.2016.60829
Singh, A., Nigam, P. S., and Murphy, J. D. J. B. t. (2011). Mechanism and challenges in commercialisation of algal biofuels. 102, 26-34. DOI: https://doi.org/10.1016/j.biortech.2010.06.057 DOI: https://doi.org/10.1016/j.biortech.2010.06.057
Sithranga Boopathy, N., and Kathiresan, K. J. J. o. o. (2010). Anticancer drugs from marine flora: an overview. 2010. DOI: https://doi.org/10.1155/2010/214186 DOI: https://doi.org/10.1155/2010/214186
Smidt, C. (2000). Effects of lifepak® supplementation on antioxidant status and ldl-oxidation in healthy non-smokers.
Soletto, D., Binaghi, L., Lodi, A., Carvalho, J., and Converti, A. J. A. (2005). Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. 243, 217-224. DOI: https://doi.org/10.1016/j.aquaculture.2004.10.005 DOI: https://doi.org/10.1016/j.aquaculture.2004.10.005
Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. J. J. o. b., and bioengineering (2006). Commercial applications of microalgae. 101, 87-96. DOI: https://doi.org/10.1263/jbb.101.87 DOI: https://doi.org/10.1263/jbb.101.87
Stephens, E., Ross, I. L., King, Z., Mussgnug, J. H., Kruse, O., Posten, C., Borowitzka, M. A., and Hankamer, B. J. N. b. (2010). An economic and technical evaluation of microalgal biofuels. 28, 126-128. DOI: https://doi.org/10.1038/nbt0210-126 DOI: https://doi.org/10.1038/nbt0210-126
Stolz, P., Obermayer, B. J. C., and toiletries (2005). Manufacturing microalgae for skin care. 120, 99-106.
Suganya, T., Varman, M., Masjuki, H., Renganathan, S. J. R., and Reviews, S. E. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. 55, 909-941. DOI: https://doi.org/10.1016/j.rser.2015.11.026 DOI: https://doi.org/10.1016/j.rser.2015.11.026
Vannini, C., Domingo, G., Marsoni, M., De Mattia, F., Labra, M., Castiglioni, S., and Bracale, M. J. A. t. (2011). Effects of a complex mixture of therapeutic drugs on unicellular algae Pseudokirchneriella subcapitata. 101, 459-465. DOI: https://doi.org/10.1016/j.aquatox.2010.10.011 DOI: https://doi.org/10.1016/j.aquatox.2010.10.011
Vonshak, A. (1997). "Spirulina platensis arthrospira: physiology, cell-biology and biotechnology," CRC press. DOI: https://doi.org/10.1201/9781482272970 DOI: https://doi.org/10.1201/9781482272970
Waldenstedt, L., Inborr, J., Hansson, I., Elwinger, K. J. A. F. S., and Technology (2003). Effects of astaxanthin-rich algal meal (Haematococcus pluvalis) on growth performance, caecal campylobacter and clostridial counts and tissue astaxanthin concentration of broiler chickens. 108, 119-132. DOI: https://doi.org/10.1016/S0377-8401(03)00164-0 DOI: https://doi.org/10.1016/S0377-8401(03)00164-0
Wang, B., Li, Y., Wu, N., Lan, C. Q. J. A. m., and biotechnology (2008). CO 2 bio-mitigation using microalgae. 79, 707-718. DOI: https://doi.org/10.1007/s00253-008-1518-y DOI: https://doi.org/10.1007/s00253-008-1518-y
Wang, J., Wang, X.-D., Zhao, X.-Y., Liu, X., Dong, T., and Wu, F.-A. J. B. t. (2015). From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids. 184, 405-414. DOI: https://doi.org/10.1016/j.biortech.2014.09.133 DOI: https://doi.org/10.1016/j.biortech.2014.09.133
Wen, Z.-Y., and Chen, F. J. B. a. (2003). Heterotrophic production of eicosapentaenoic acid by microalgae. 21, 273-294. DOI: https://doi.org/10.1016/S0734-9750(03)00051-X DOI: https://doi.org/10.1016/S0734-9750(03)00051-X
Yamaguchi, K. J. J. o. a. p. (1996). Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. 8, 487-502. DOI: https://doi.org/10.1007/BF02186327 DOI: https://doi.org/10.1007/BF02186327
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 MF BASHIR, MU FAROOQ, S KHALID, Q ALI
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.