AN OVERVIEW OF LEAF RUST RESISTANCE GENES IN TRITICUM AESTIVUM

Authors

  • A JAVED Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan
  • S MUHAMMAD Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
  • Q ALI Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan/Department of Plant Pathology, University of the Punjab Lahore, Pakistan
  • T MANZOOR Department of Plant Pathology, University of the Punjab Lahore, Pakistan

DOI:

https://doi.org/10.54112/bbasr.v2022i1.26

Keywords:

Leaf rust, resistance genes, Lr1, Lr80, Triticum aestivum

Abstract

Wheat is the world's third big crop producing 600 million tonnes yearly. For example, wheat harvest in 2007 was 607 million tonnes compared to rice and maize production of rice was 652 million tonnes and production of maize was 785 million tonnes. Although, due to fungus diseases, we lose 10% of our crops yearly. Leaf rust (Lr), Stripe rust (Sr), and yellow rust (Yr) are the three types of rust that are present in wheat. In this article, we discussed leaf rust and its resistance genes. Leaf rust is also known as “Brown Rust”. This disease is caused by the fungus Puccinia recondita f. sp tritici, which is the most serious in common wheat (Triticum aestivum). These fungal pathogen-caused resistance genes degrade the amount and quality of wheat fields. Leaf rust is primarily found on leaves, but it can also infect glumes. Scientists studying the illness have discovered that there are many types of resistance genes present in Leaf rust, which is also known as Lr. Until today there are 80 resistance genes have been discovered in leaf rust (Lr). So, the resistance genes Lr1 to Lr3ka, Lr10 to Lr13, Lr14b to Lr17b, Lr20, Lr22b, Lr27, Lr30, Lr31, Lr33, Lr34, Lr46, Lr48, Lr49, Lr52, Lr60, Lr67 to Lr70, Lr73 to Lr75, Lr78 and Lr80 theses all resistance genes of leaf rust (Lr) present in wheat (Triticum aestivum). These genes, Lr9 and Lr76 were discovered in (Aegilops umbellulate). Lr14a is a subset of Lr14 (Triticum dicoccum). Lr18 and Lr50 (Triticum timopheevii). Lr19, Lr24, Lr29 (Thinopyrum ponticum). Lr21, Lr22a, Lr32, Lr39, Lr42 (Aegilops tauschii). Lr23, Lr61 and Lr72 are different LRs (Triticum turgidum ssp. Durum). Lr25, Lr26, and Lr45 (Secale cereale). Lr28, Lr35, Lr36, Lr47, Lr51, Lr66 (Aegilops speltoides). Lr37 is an abbreviated form of the word (Triticum ventricosum). Lr38 is a slang name for a (Thinopyrum intermedium). Lr44, Lr65 and Lr71 (Triticum aestivum spelta). Lr53 and Lr64 (Triticum dicoccides). Lr54 is the resistance gene assigned to (Aegilops kotschyi). Lr55 is slang (Elymus trachycaulis). Lr56(Aegilops sharonensis). Lr57(Aegilops geniculate). Lr58(Aegilops triuncialis). Lr59(Aegilops peregrina). Lr62 (Aegilops neglecta). Lr63 (Triticum monococcum). Lr77 (Santa Fe). Lr79 (Triticum durum). Different varieties of wheat include these resistance genes. These resistance genes were identified because farmers don’t use spares or toxic chemicals on wheat. After all, these chemicals affect human health, so these resistance genes were identified to save human health.

References

Agrios, G. N. (2005). Plant pathology. Elsevier. Academic Press; 5th edition, ISBN-13: ‎ 978-0120445653.

Balqees, N., Ali, Q., & Malik, A. (2020). Genetic evaluation for seedling traits of maize and wheat under biogas wastewater, sewage water and drought stress conditions. Biological and Clinical Sciences Research Journal, 2020(1). https://doi.org/10.54112/bcsrj.v2020i1.38 DOI: https://doi.org/10.54112/bcsrj.v2020i1.38

Bariana, H., Brown, G., Bansal, U., Miah, H., Standen, G., & Lu, M. (2007). Breeding triple rust resistant wheat cultivars for Australia using conventional and marker-assisted selection technologies. Australian Journal of Agricultural Research, 58(6), 576-587. https://doi.org/10.1071/AR07124 DOI: https://doi.org/10.1071/AR07124

Bent, A. F. (1996). Plant disease resistance genes: function meets structure. The Plant Cell, 8(10), 1757. doi: 10.1105/tpc.8.10.1757 DOI: https://doi.org/10.2307/3870228

Beteselassie, N., Fininsa, C., & Badebo, A. (2007). Sources of stem rust resistance in Ethiopian tetraploid wheat accessions. African Crop Science Journal, 15(1). DOI: 10.4314/acsj.v15i1.54417 DOI: https://doi.org/10.4314/acsj.v15i1.54417

Bolton, M. D., Kolmer, J. A., & Garvin, D. F. (2008). Wheat leaf rust caused by Puccinia triticina. Molecular plant pathology, 9(5), 563-575. https://doi.org/10.1111/j.1364-3703.2008.00487.x DOI: https://doi.org/10.1111/j.1364-3703.2008.00487.x

Brennan, J., Hackett, R., McCabe, T., Grant, J., Fortune, R., & Forristal, P. (2014). The effect of tillage system and residue management on grain yield and nitrogen use efficiency in winter wheat in a cool Atlantic climate. European Journal of Agronomy, 54, 61-69. https://doi.org/10.1016/j.eja.2013.11.009 DOI: https://doi.org/10.1016/j.eja.2013.11.009

Brennan, J. P., & Murray, G. M. (1998). Economic importance of wheat diseases in Australia.

Brennan, J. P., & Quade, K. J. (2006). Evolving usage of materials from CIMMYT in developing Australian wheat varieties. Australian Journal of Agricultural Research, 57(9), 947-952. DOI: https://doi.org/10.1071/AR05400

Briggle, L. (1980). Origin and botany of wheat. Wheat: documenta Ciba-Geigy.

Crespo-Herrera, L., Crossa, J., Huerta-Espino, J., Vargas, M., Mondal, S., Velu, G., Payne, T., Braun, H., & Singh, R. (2018). Genetic gains for grain yield in CIMMYT's semi‐arid wheat yield trials grown in suboptimal environments. Crop Science, 58(5), 1890-1898. DOI: 10.2135/cropsci2018.01.0017 DOI: https://doi.org/10.2135/cropsci2018.01.0017

Curtis, B. C., Rajaram, S., & Gómez Macpherson, H. (2002). Bread wheat: improvement and production. Food and Agriculture Organization of the United Nations (FAO).

Dangl, J. L., Dietrich, R. A., & Richberg, M. H. (1996). Death don't have no mercy: cell death programs in plant-microbe interactions. The Plant Cell, 8(10), 1793. doi: 10.1105/tpc.8.10.1793 DOI: https://doi.org/10.2307/3870230

Dixon, J., Braun, H.-J., Kosina, P., & Crouch, J. H. (2009). Wheat facts and futures 2009. Cimmyt.

Farooq, M. U., Bashir, M. F., Khan, M. U. S., Iqbal, B., & Ali, Q. (2021). Role of crispr to improve abiotic stress tolerance in crop plants. Biological and Clinical Sciences Research Journal, 2021(1). https://doi.org/10.54112/bcsrj.v2021i1.69 DOI: https://doi.org/10.54112/bcsrj.v2021i1.69

Fatima, A., Saeed, A., Khalid, M. N., Imam, M. M. F., Rafique, M. A., Sharif, M. S., Iqbal, N., Tipu, A. L. K., & Amjad, I. (2022). Genetic studies of f2 population for fiber and yield related attributes in Gossypium hirsutum. Biological and Clinical Sciences Research Journal, 2022(1). https://doi.org/10.54112/bcsrj.v2022i1.134 DOI: https://doi.org/10.54112/bcsrj.v2022i1.134

Fatima, A., Saeed, A., Ullah, M. I., Shah, S. A. H., Ijaz, M., Anwar, M. R., Khaliq, A., Chohan, S. M., Khalid, M. N., Khan, A., & Amjad, I. (2022). Estimation of gene action for the selection of superior parents and their cross combinations for yield and fiber associated attributes in american cotton (Gossypium hirsutum L.). Biological and Clinical Sciences Research Journal, 2022(1). https://doi.org/10.54112/bcsrj.v2022i1.151 DOI: https://doi.org/10.54112/bcsrj.v2022i1.151

Feldman, M., & Levy, A. A. (2015). Origin and evolution of wheat and related Triticeae species. In Alien introgression in wheat (pp. 21-76). Springer. DOI: https://doi.org/10.1007/978-3-319-23494-6_2

Flor, H. H. (1971). Current status of the gene-for-gene concept. Annual review of phytopathology, 9(1), 275-296. DOI: https://doi.org/10.1146/annurev.py.09.090171.001423

Friebe, B., Jiang, J., Raupp, W., McIntosh, R., & Gill, B. (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 91(1), 59-87. http://dx.doi.org/10.1007/BF00035277 DOI: https://doi.org/10.1007/BF00035277

Ghafoor, M. F., Ali, Q., & Malik, A. (2020). Effects of salicylic acid priming for salt stress tolerance in wheat. Biological and Clinical Sciences Research Journal, 2020(1). https://doi.org/10.54112/bcsrj.v2020i1.24 DOI: https://doi.org/10.54112/bcsrj.v2020i1.24

Gill, B. S., Appels, R., Botha-Oberholster, A.-M., Buell, C. R., Bennetzen, J. L., Chalhoub, B., Chumley, F., Dvorák, J., Iwanaga, M., & Keller, B. (2004). A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics, 168(2), 1087-1096. doi: 10.1534/genetics.104.034769 DOI: https://doi.org/10.1534/genetics.104.034769

Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., Rosewarne, G. M., Periyannan, S. K., Viccars, L., Calvo-Salazar, V., Lan, C., & Lagudah, E. S. (2012). Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theoretical and Applied Genetics, 124(8), 1475-1486. DOI: 10.1007/s00122-012-1802-1 DOI: https://doi.org/10.1007/s00122-012-1802-1

Herrera-Foessel, S. A., Singh, R. P., Lillemo, M., Huerta-Espino, J., Bhavani, S., Singh, S., Lan, C., Calvo-Salazar, V., & Lagudah, E. S. (2014). Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theoretical and Applied Genetics, 127(4), 781-789. DOI: 10.1007/s00122-013-2256-9 DOI: https://doi.org/10.1007/s00122-013-2256-9

Idrees, H., Shabbir, I., Khurshid, H., Khurshid, A., Tahira, R. I., Fatima, F., Younas, A., & Abbas, H. G. (2022). Seed Priming Of Wheat Through Salicylic Acid To Induce Salt Stress Tolerance. Biological and Clinical Sciences Research Journal, 2022(1). https://doi.org/10.54112/bcsrj.v2022i1.95 DOI: https://doi.org/10.54112/bcsrj.v2022i1.95

Iqbal, M. A., Shen, Y., Stricevic, R., Pei, H., Sun, H., Amiri, E., Penas, A., & del Rio, S. (2014). Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agricultural Water Management, 135, 61-72. DOI: 10.1016/j.agwat.2013.12.012 DOI: https://doi.org/10.1016/j.agwat.2013.12.012

Iqbal, S., Ali, Q., & Malik, A. (2021). Effects of seed priming with salicylic acid on zea mays seedlings grown under salt stress conditions. Biological and Clinical Sciences Research Journal, 2021(1). https://doi.org/10.54112/bcsrj.v2021i1.65 DOI: https://doi.org/10.54112/bcsrj.v2021i1.65

Iqra, L., Rashid, M. S., Ali, Q., Latif, I., & Malik, A. (2020). Evaluation of genetic variability for salt tolerance in wheat. Biological and Clinical Sciences Research Journal, 2020(1). https://doi.org/10.54112/bcsrj.v2020i1.16 DOI: https://doi.org/10.54112/bcsrj.v2020i1.16

Jørgensen, L., Matzen, N., Havis, N., Holdgate, S., Clark, B., Blake, J., Glazek, M., Korbas, M., Danielewicz, J., & Maumene, C. (2020). Efficacy of common azoles and mefentrifluconazole against septoria, brown rust and yellow rust in wheat across Europe. Modern Fungicides and Antifungal Compounds, 9, 27-34.

Keen, N. (1990). Gene-for-gene complementarity in plant-pathogen interactions. Annual review of genetics, 24(1), 447-463. DOI: https://doi.org/10.1146/annurev.ge.24.120190.002311

Levy, A. A., & Feldman, M. (2022). Evolution and origin of bread wheat. The Plant Cell. Volume 34, Issue 7, 2549–2567. https://doi.org/10.1093/plcell/koac130 DOI: https://doi.org/10.1093/plcell/koac130

McIntosh, R., & Brown, G. (1997). Anticipatory breeding for resistance to rust diseases in wheat. Annual review of phytopathology, 35(1), 311-326. DOI: https://doi.org/10.1146/annurev.phyto.35.1.311

Milus, E. A., Lee, K. D., & Brown-Guedira, G. (2015). Characterization of stripe rust resistance in wheat lines with resistance gene Yr17 and implications for evaluating resistance and virulence. Phytopathology, 105(8), 1123-1130. DOI: 10.1094/PHYTO-11-14-0304-R DOI: https://doi.org/10.1094/PHYTO-11-14-0304-R

Monneveux, P., Rekika, D., Acevedo, E., & Merah, O. (2006). Effect of drought on leaf gas exchange, carbon isotope discrimination, transpiration efficiency and productivity in field grown durum wheat genotypes. Plant Science, 170(4), 867-872. https://doi.org/10.1016/j.plantsci.2005.12.008 DOI: https://doi.org/10.1016/j.plantsci.2005.12.008

Naseem, S., Ali, Q., & Malik, A. (2020). Evaluation of maize seedling traits under salt stress. Biological and Clinical Sciences Research Journal, 2020(1). https://doi.org/10.54112/bcsrj.v2020i1.25 DOI: https://doi.org/10.54112/bcsrj.v2020i1.25

Park, R., Fetch, T., Hodson, D., Jin, Y., Nazari, K., Prashar, M., & Pretorius, Z. (2011). International surveillance of wheat rust pathogens: progress and challenges. Euphytica, 179(1), 109-117. DOI 10.1007/s10681-011-0375-4 DOI: https://doi.org/10.1007/s10681-011-0375-4

Pretorius, Z., Singh, R., Wagoire, W., & Payne, T. (2000). Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant disease, 84(2), 203-203. DOI: 10.1094/PDIS.2000.84.2.203B DOI: https://doi.org/10.1094/PDIS.2000.84.2.203B

Reynolds, M. P. (1996). Increasing yield potential in wheat: breaking the barriers: proceedings of a workshop held in Ciudad Obregón, Sonora, Mexico. CIMMYT.

Roelfs, A. (1985). Wheat and rye stem rust. In Diseases, Distribution, Epidemiology, and Control (pp. 3-37). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-148402-6.50009-2

Roelfs, A. P. (1992). Rust diseases of wheat: concepts and methods of disease management. Cimmyt.

Samborski, D. (1985). Wheat leaf rust. In Diseases, Distribution, Epidemiology, and Control (pp. 39-59). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-148402-6.50010-9

Sarwar, M., Anjum, S., Ali, Q., Alam, M. W., Haider, M. S., & Mehboob, W. (2021). Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells. Scientific Reports, 11(1), 1-10. doi: 10.1038/s41598-021-04174-y DOI: https://doi.org/10.1038/s41598-021-04174-y

Singh, D., Park, R., McIntosh, R., & Bariana, H. (2008). Characterisation of stem rust and stripe rust seedling resistance genes in selected wheat cultivars from the United Kingdom. Journal of Plant Pathology, 553-562.

Tahir, T., Ali, Q., Rashid, M. S., & Malik, A. (2020). The journey of crispr-cas9 from bacterial defense mechanism to a gene editing tool in both animals and plants. Biological and Clinical Sciences Research Journal, 2020(1). https://doi.org/10.54112/bcsrj.v2020i1.17 DOI: https://doi.org/10.54112/bcsrj.v2020i1.17

Wang, L., Tian, Y., Yao, X., Zhu, Y., & Cao, W. (2014). Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images. Field Crops Research, 164, 178-188. https://doi.org/10.1016/j.fcr.2014.05.001 DOI: https://doi.org/10.1016/j.fcr.2014.05.001

Downloads

Published

2022-10-05

How to Cite

JAVED, A., MUHAMMAD, S., ALI, Q., & MANZOOR, T. (2022). AN OVERVIEW OF LEAF RUST RESISTANCE GENES IN TRITICUM AESTIVUM. Bulletin of Biological and Allied Sciences Research, 2022(1), 26. https://doi.org/10.54112/bbasr.v2022i1.26

Most read articles by the same author(s)