CLINICAL VALIDATION OF GENEXPERT MTB/RIF ASSAY IN THE RAPID DIAGNOSIS OF EXTRA PULMONARY TUBERCULOSIS
DOI:
https://doi.org/10.54112/bbasr.v2024i1.83Keywords:
Tuberculosis, Extra pulmonary Tuberculosis, Gene Xpert MTB/RIF assay, Closed system PCR, non-respiratory TBAbstract
Tuberculosis (TB) remains a significant global health concern, with nearly 2 billion people latently infected worldwide, particularly concentrated in the 30 countries with the highest TB burden, including Pakistan, ranking fifth in this category. Pakistan also grapples with Multidrug-resistant TB strains, complicating treatment options. Early diagnosis is crucial for timely TB treatment initiation and prevention of further transmission. Among various diagnostic tests, the Gene Xpert MTB/RIF assay stands out as a promising tool endorsed by the World Health Organization for diagnosing TB in the lungs and other organs. The current study aims to evaluate the diagnostic performance of this assay in the current setting of Peshawar, Khyber Pakhtunkhwa for the diagnosis of extrapulmonary TB. The study included 529 extrapulmonary specimens from suspected TB patients, meeting the specified criteria, anonymously and consecutively. These specimens underwent decontamination using the NALC-NaOH method and were then inoculated onto Lowenstein Jensen media slants. The remaining pellet from each specimen was subjected to testing using the Xpert assay to detect TB bacilli. The study comprised 529 specimens, including 181 pleural fluid, 117 CSF, 89 tissue biopsies, 84 pus, and 58 ascitic fluid samples. The Xpert assay exhibited an overall sensitivity of 78.3% and a specificity of 92% compared to culture techniques. Its positive predictive value stood at 42.6%, with a negative predictive value of 98.2%. Notably, the sensitivity of the Xpert assay was particularly high for pus and tissue biopsy specimens, while it was moderate for body fluids. Specificity remained consistent across various non-respiratory specimens. The study recommends the use of the Xpert assay for diagnosing extrapulmonary TB in Peshawar, Pakistan, due to its simplicity and very short turnaround time. Despite its moderate sensitivity in body fluids, this can be enhanced by considering additional clinical findings.
References
Ahmed, M. T. (2017). Comparison of Xpert MTB/RIFAssay with smear microscopy and culture for the detection of pulmonary tuberculosis, BRAC University.
Alexander, K. A., Laver, P. N., Michel, A. L., Williams, M., van Helden, P. D., Warren, R. M., and van Pittius, N. C. G. (2010). Novel Mycobacterium tuberculosis complex pathogen, M. mungi. Emerging infectious diseases 16, 1296. doi: 10.3201/eid1608.100314
Bacaër, N., Ouifki, R., Pretorius, C., Wood, R., and Williams, B. (2008). Modeling the joint epidemics of TB and HIV in a South African township. Journal of mathematical biology 57, 557-593. https://doi.org/10.1007/s00285-008-0177-z
Brosch, R., Pym, A. S., Gordon, S. V., and Cole, S. T. (2001). The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends in microbiology 9, 452-458. doi: 10.1016/s0966-842x(01)02131-x.
Bynum, H. (2012). "Spitting blood: the history of tuberculosis," OUP Oxford.
Campelo, T. A., Cardoso de Sousa, P. R., Nogueira, L. d. L., Frota, C. C., and Zuquim Antas, P. R. (2021). Revisiting the methods for detecting Mycobacterium tuberculosis: what has the new millennium brought thus far? Access microbiology 3, 000245. doi: 10.1099/acmi.0.000245
De Vos, M., Müller, B., Borrell, S., Black, P., Van Helden, P., Warren, R., Gagneux, S., and Victor, T. (2013). Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrobial agents and chemotherapy 57, 827-832. doi: 10.1128/AAC.01541-12
Demers, A.-M., Verver, S., Boulle, A., Warren, R., Van Helden, P., Behr, M. A., and Coetzee, D. (2012). High yield of culture-based diagnosis in a TB-endemic setting. BMC infectious diseases 12, 1-8. https://doi.org/10.1186/1471-2334-12-218
Elbrolosy, A. M., El Helbawy, R. H., Mansour, O. M., and Latif, R. A. (2021). Diagnostic utility of GeneXpert MTB/RIF assay versus conventional methods for diagnosis of pulmonary and extra-pulmonary tuberculosis. BMC microbiology 21, 1-10. doi: 10.1186/s12866-021-02210-5.
Hutton, M. D., Stead, W. W., Cauthen, G. M., Bloch, A. B., and Ewing, W. M. (1990). Nosocomial transmission of tuberculosis associated with a draining abscess. Journal of infectious diseases 161, 286-295. doi: 10.1093/infdis/161.2.286
Isticato, R., and Ricca, E. (2016). Spore surface display. The bacterial spore: from molecules to systems, 349-366. doi: 10.1128/microbiolspec.TBS-0011-2012
Kumari, R., Sinha, P., Banerjee, T., and Anupurba, S. (2016). Isolation and characterization of Mycobacterium tuberculosis from extra pulmonary specimens in a tertiary referral hospital of north India. Journal of Advances in Medicine 5, 25-28. DOI:10.5958/2319-4324.2016.00006.7
Lewis, J. A., and Fleming, J. T. (1995). Basic culture methods. Methods in cell biology 48, 3-29. https://doi.org/10.1016/S0091-679X(08)61381-3
Li T-x, W. J., Yang Y-s, Wang P-s, Zhou G, Liao C-y, et al. (2023). Evaluation of Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis in Southwest China.
Mechal, Y., Benaissa, E., El Mrimar, N., Benlahlou, Y., Bssaibis, F., Zegmout, A., Chadli, M., Malik, Y. S., Touil, N., and Abid, A. (2019). Evaluation of GeneXpert MTB/RIF system performances in the diagnosis of extrapulmonary tuberculosis. BMC infectious Diseases 19, 1-8. doi: 10.1186/s12879-019-4687-7
Organization, W. H. (2014). "Xpert MTB/RIF implementation manual: technical and operational ‘how-to’; practical considerations," Rep. No. 9241506709. World Health Organization.
Orme, I. M. (2014). A new unifying theory of the pathogenesis of tuberculosis. Tuberculosis 94, 8-14. doi: 10.1016/j.tube.2013.07.004
Preece, C. L. (2016). "A study of the diagnosis, treatment and epidemiology of Mycobacterium abscessus in patients with cystic fibrosis," University of Northumbria at Newcastle (United Kingdom).
Ramirez-Lapausa, M., Menendez-Saldana, A., and Noguerado-Asensio, A. (2015). Extrapulmonary tuberculosis: an overview. Rev Esp Sanid Penit 17, 3-11. doi: 10.4321/S1575-06202015000100002
Robertson, S., Lawn, S. D., Welte, A., Bekker, L.-G., and Wood, R. (2011). Tuberculosis in a South African prison–a transmission modelling analysis. South African Medical Journal 101, 809-813.
Sanchez-Padilla, E., Merker, M., Beckert, P., Jochims, F., Dlamini, T., Kahn, P., Bonnet, M., and Niemann, S. (2015). Detection of drug-resistant tuberculosis by Xpert MTB/RIF in Swaziland. New England Journal of Medicine 372, 1181-1182. doi: 10.1056/NEJMc1413930
Satta, G. (2018). The challenge of drug resistant tuberculosis, UCL (University College London).
Sharma, S. K., Mohan, A., and Kohli, M. (2021). Extrapulmonary tuberculosis. Expert review of respiratory medicine 15, 931-948. doi: 10.1080/17476348.2021.1927718
Singhal, R., and Myneedu, V. P. (2015). Microscopy as a diagnostic tool in pulmonary tuberculosis. The International Journal of Mycobacteriology 4, 1-6. doi: 10.1016/j.ijmyco.2014.12.006
Tadesse, M., Abebe, G., Bekele, A., Bezabih, M., Yilma, D., Apers, L., de Jong, B., and Rigouts, L. (2019). Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a diagnostic evaluation study. Clinical Microbiology and Infection 25, 1000-1005. doi: 10.1016/j.cmi.2018.12.018
Tahseen, S., Khanzada, F. M., Baloch, A. Q., Abbas, Q., Bhutto, M. M., Alizai, A. W., Zaman, S., Qasim, Z., Durrani, M. N., and Farough, M. K. (2020). Extrapulmonary tuberculosis in Pakistan-A nation-wide multicenter retrospective study. PloS one 15, e0232134. doi: 10.1371/journal.pone.0232134
Tiwari, R. (2009). "Laboratorytechniques in microbiology & biotechnology," Bharat Shushan.
Tomasicchio, M., Theron, G., Pietersen, E., Streicher, E., Stanley-Josephs, D., Van Helden, P., Warren, R., and Dheda, K. (2016). The diagnostic accuracy of the MTBDRplus and MTBDRsl assays for drug-resistant TB detection when performed on sputum and culture isolates. Scientific reports 6, 1-8. doi: 10.1038/srep17850
Ullah, W., Wali, A., Haq, M. U., Yaqoob, A., Fatima, R., and Khan, G. M. (2021). Public–private mix models of tuberculosis care in Pakistan: a high-burden country perspective. Frontiers in Public Health 9, 703631. doi: 10.3389/fpubh.2021.703631
Vogel, M., Utpatel, C., Corbett, C., Kohl, T. A., Iskakova, A., Ahmedov, S., Antonenka, U., Dreyer, V., Ibrahimova, A., and Kamarli, C. (2021). Implementation of whole genome sequencing for tuberculosis diagnostics in a low-middle income, high MDR-TB burden country. Scientific reports 11, 15333. doi: 10.1038/s41598-021-94297-z
Wallace, E., Hendrickson, D., Tolli, N., Mehaffy, C., Peña, M., Nick, J. A., Knabenbaur, P., Watkins, J., Simpson, A., and Amin, A. G. (2021). Culturing mycobacteria. Mycobacteria Protocols, 1-58. doi: 10.1007/978-1-0716-1460-0_1
Wang, J., Wang, Y., Ling, X., Zhang, Z., Deng, Y., and Tian, P. (2022). Comparison of sputum treated with power ultrasound and routine NALC-NaOH methods for mycobacterial culture: a prospective study. Journal of Clinical Medicine 11, 4694. https://doi.org/10.3390/jcm11164694
Wei, S.-C., Sollano, J., Hui, Y. T., Yu, W., Santos Estrella, P. V., Llamado, L. J. Q., and Koram, N. (2021). Epidemiology, burden of disease, and unmet needs in the treatment of ulcerative colitis in Asia. Expert Review of Gastroenterology & Hepatology 15, 275-289. doi: 10.1080/17474124.2021.1840976
Zhang, M., Xue, M., and He, J.-q. (2020). Diagnostic accuracy of the new Xpert MTB/RIF Ultra for tuberculosis disease: a preliminary systematic review and meta-analysis. International Journal of Infectious Diseases 90, 35-45. doi: 10.1016/j.ijid.2019.09.016
Zijenah, L. S. (2018). The world health organization recommended TB diagnostic tools. Tuberculosis 2, 71-90.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 M KASHIF, M NAYER, A SHOUKAT, A ULLAH, . SHEEMA, N HASSAN, J ULLAH, MA SLIM, A ULLAH
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.