TAPPING INTO THE UNSUNG POTENTIAL OF MAIZE (ZEA MAYS L.) BASED SILAGE IN ANIMAL FEED INDUSTRY

Authors

  • ML ZAFAR Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Pakistan
  • F AKBAR Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Pakistan
  • M IRTAZA Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Pakistan
  • MA ZAFAR Department of Agronomy, University of Agriculture Faisalabad, Pakistan
  • M SAEED College of Earth and Environment Sciences, Punjab University Lahore, Pakistan
  • MN KHALID Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan

DOI:

https://doi.org/10.54112/bbasr.v2020i1.40

Keywords:

silage, maize, animal feed, fiber, starch, livestock

Abstract

Feed is widely recognized as the most crucial component of livestock production systems, accounting for up to 70% of production costs. The existing gap between the supply and demand of fodder is a matter of significant concern. To minimize wastage and enhance animal production, fodder crops can be preserved as silage, haylage, or hay for feeding purposes. Maize silage stands out as a favored option due to its higher yield, acceptable nutritional content, and the presence of water-soluble carbohydrates that can be fermented into lactic acid. Additionally, it provides an economical source of fiber and starch that complements grazing for a substantial part of the year. When incorporating high levels of maize silage supplementation, optimizing milk solids output requires addressing dietary deficiencies in protein, minerals, and occasionally fiber. Although certain losses naturally occur during fermentation and storage, improving management techniques can help reduce them. Over the years, the in-situ approach has been widely employed to assess the expected digestibility of feed components in ruminants. This approach is a valuable tool for predicting the rumen degradability of organic matter derived from the diet. To address these challenges, it is imperative to identify non-conventional feed sources or encourage farmers to cultivate more nutritious fodder varieties.

References

Adams, R. S. (1995). Dairy reference manual.

Adriaanse, F., & Human, J. (1991). The effects of nitrate: ammonium ratios and dicyandiamide on the nitrogen response of Zea mays L. in a high rainfall area on an acid soil. Plant and soil 135, 43-52. DOI: https://doi.org/10.1007/BF00014777

Akbar, M., Lebzien, P., & Flachowsky, G. (2002). Measurement of yield and in situ dry matter degradability of maize varieties harvested at two stages of maturity in sheep. Animal feed science and technology 100, 53-70. https://doi.org/10.1016/S0377-8401(02)00083-4 DOI: https://doi.org/10.1016/S0377-8401(02)00083-4

Ali, M., Weisbjerg, M., Cone, J., Van Duinkerken, G., Blok, M., Bruinenberg, M., & Hendriks, W. (2012). Postruminal degradation of crude protein, neutral detergent fibre and starch of maize and grass silages in dairy cows. Animal feed science and technology 177, 172-179. https://doi.org/10.1016/j.anifeedsci.2012.08.015 DOI: https://doi.org/10.1016/j.anifeedsci.2012.08.015

Allen, M. S. (1997). Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. Journal of dairy science 80, 1447-1462. https://doi.org/10.3168/jds.S0022-0302(97)76074-0 DOI: https://doi.org/10.3168/jds.S0022-0302(97)76074-0

Andrae, J., Hunt, C., Pritchard, G., Kennington, L., Harrison, J., Kezar, W., & Mahanna, W. (2001). Effect of hybrid, maturity, and mechanical processing of corn silage on intake and digestibility by beef cattle. Journal of Animal Science 79, 2268-2275. https://doi.org/10.2527/2001.7992268x DOI: https://doi.org/10.2527/2001.7992268x

Arriola, K., Queiroz, O., Romero, J., Casper, D., Muniz, E., Hamie, J., & Adesogan, A. (2015). Effect of microbial inoculants on the quality and aerobic stability of bermudagrass round-bale haylage. Journal of dairy science 98, 478-485. https://doi.org/10.3168/jds.2014-8411 DOI: https://doi.org/10.3168/jds.2014-8411

Atwell, D., Jaster, E., Moore, K., & Fernando, R. (1988). Evaluation of high oil corn and corn silage for lactating cows. Journal of dairy science 71, 2689-2698. https://doi.org/10.3168/jds.S0022-0302(88)79862-8 DOI: https://doi.org/10.3168/jds.S0022-0302(88)79862-8

Azim, A., Khan, A., Nadeem, M., & Muhammad, D. (2000). Influence of maize and cowpea intercropping on fodder production and characteristics of silage. Asian-Australasian Journal of Animal Sciences 13, 781-784. DOI: https://doi.org/10.5713/ajas.2000.781

Baker, A., & Drouillard, J. (2018). 63 Late-Breaking: Fermentation characteristics and aerobic stability of silage from Enogen® Feed Corn. Journal of Animal Science 96, 393. https://doi.org/10.1093%2Fjas%2Fsky404.863 DOI: https://doi.org/10.1093/jas/sky404.863

Bal, M., Coors, J., & Shaver, R. (1997). Impact of the maturity of corn for use as silage in the diets of dairy cows on intake, digestion, and milk production. Journal of dairy science 80, 2497-2503. https://doi.org/10.3168/jds.S0022-0302(97)76202-7 DOI: https://doi.org/10.3168/jds.S0022-0302(97)76202-7

Bal, M., Shaver, R., Shinners, K., Coors, J., Lauer, J., Straub, R., & Koegel, R. (2000). Stage of maturity, processing, and hybrid effects on ruminal in situ disappearance of whole-plant corn silage. Animal feed science and technology 86, 83-94. https://doi.org/10.1016/S0377-8401(00)00163-2 DOI: https://doi.org/10.1016/S0377-8401(00)00163-2

Bartle, S., McDonnell, M., Hoegemeyer, T., Klopfenstein, T., & Britton, B. (1983). Select corn for grain yield and feed value. MP-University of Nebraska, Agricultural Experiment Station (USA).

Blasel, H., Hoffman, P., & Shaver, R. (2006). Degree of starch access: An enzymatic method to determine starch degradation potential of corn grain and corn silage. Animal feed science and technology 128, 96-107. https://doi.org/10.1016/j.anifeedsci.2005.08.018 DOI: https://doi.org/10.1016/j.anifeedsci.2005.08.018

Borreani, G., Tabacco, E., Schmidt, R., Holmes, B., & Muck, R. (2018). Silage review: Factors affecting dry matter and quality losses in silages. Journal of dairy science 101, 3952-3979. https://doi.org/10.3168/jds.2017-13837 DOI: https://doi.org/10.3168/jds.2017-13837

Brüning, D., Gerlach, K., Weiß, K., & Südekum, K. H. (2018). Effect of compaction, delayed sealing and aerobic exposure on maize silage quality and on formation of volatile organic compounds. Grass and Forage Science 73, 53-66. https://doi.org/10.1111/gfs.12288 DOI: https://doi.org/10.1111/gfs.12288

Buza, M., Holden, L., White, R., & Ishler, V. (2014). Evaluating the effect of ration composition on income over feed cost and milk yield. Journal of dairy science 97, 3073-3080. https://doi.org/10.3168/jds.2013-7622 DOI: https://doi.org/10.3168/jds.2013-7622

Darby, H. M., & Lauer, J. G. (2002). Harvest date and hybrid influence on corn forage yield, quality, and preservation. Agronomy Journal 94, 559-566. https://doi.org/10.2134/agronj2002.5590 DOI: https://doi.org/10.2134/agronj2002.5590

Dehghani, M., Weisbjerg, M., Hvelplund, T., & Kristensen, N. (2012). Effect of enzyme addition to forage at ensiling on silage chemical composition and NDF degradation characteristics. Livestock Science 150, 51-58. https://doi.org/10.1016/j.livsci.2012.07.031 DOI: https://doi.org/10.1016/j.livsci.2012.07.031

Der Bedrosian, M., Nestor Jr, K., & Kung Jr, L. (2012). The effects of hybrid, maturity, and length of storage on the composition and nutritive value of corn silage. Journal of dairy science 95, 5115-5126. https://doi.org/10.3168/jds.2011-4833 DOI: https://doi.org/10.3168/jds.2011-4833

Di Marco, O., Aello, M., Nomdedeu, M., & Van Houtte, S. (2002). Effect of maize crop maturity on silage chemical composition and digestibility (in vivo, in situ and in vitro). Animal feed science and technology 99, 37-43. https://doi.org/10.1016/S0377-8401(02)00077-9 DOI: https://doi.org/10.1016/S0377-8401(02)00077-9

Ebling, T., & Kung Jr, L. (2004). A comparison of processed conventional corn silage to unprocessed and processed brown midrib corn silage on intake, digestion, and milk production by dairy cows. Journal of dairy science 87, 2519-2526. https://doi.org/10.3168/jds.S0022-0302(04)73376-7 DOI: https://doi.org/10.3168/jds.S0022-0302(04)73376-7

FAO, F. (2017). Food and Agriculture Organization of the United Nations Statistics Division (FAOSTAT).

Fernandez, I., Nozière, P., & Michalet-Doreau, B. (2004). Site and extent of starch digestion of whole-plant maize silages differing in maturity stage and chop length, in dairy cows. Livestock Production Science 89, 147-157. https://doi.org/10.1016/j.livprodsci.2004.02.011 DOI: https://doi.org/10.1016/j.livprodsci.2004.02.011

Ferraretto, L., Fonseca, A., Sniffen, C., Formigoni, A., & Shaver, R. (2015). Effect of corn silage hybrids differing in starch and neutral detergent fiber digestibility on lactation performance and total-tract nutrient digestibility by dairy cows. Journal of dairy science 98, 395-405. https://doi.org/10.3168/jds.2014-8232 DOI: https://doi.org/10.3168/jds.2014-8232

Filya, I. (2004). Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Animal feed science and technology 116, 141-150. https://doi.org/10.1016/j.anifeedsci.2004.06.003 DOI: https://doi.org/10.1016/j.anifeedsci.2004.06.003

Ghavipanje, N., Nasri, M. F., Farhangfar, H., & Modaresi, J. (2016). In situ, in vitro and in vivo nutritive value assessment of Barberry leaf as a roughage for goat feeding. Small Ruminant Research 141, 94-98. https://doi.org/10.1016/j.smallrumres.2016.07.004 DOI: https://doi.org/10.1016/j.smallrumres.2016.07.004

Hafner, S. D., Howard, C., Muck, R. E., Franco, R. B., Montes, F., Green, P. G., Mitloehner, F., Trabue, S. L., & Rotz, C. A. (2013). Emission of volatile organic compounds from silage: Compounds, sources, and implications. Atmospheric environment 77, 827-839. https://doi.org/10.1016/j.atmosenv.2013.04.076 DOI: https://doi.org/10.1016/j.atmosenv.2013.04.076

Horst, E. H., López, S., Neumann, M., Giráldez, F. J., & Bumbieris Junior, V. H. (2020). Effects of hybrid and grain maturity stage on the ruminal degradation and the nutritive value of maize forage for silage. Agriculture 10, 251. https://doi.org/10.3390/agriculture10070251 DOI: https://doi.org/10.3390/agriculture10070251

Iqbal, M. A., Ahmad, B., Shah, M. H., & Ali, K. (2015). A study on forage sorghum (Sorghum bicolor L.) production in perspectives of white revolution in Punjab, Pakistan: Issues and future options. Agric. Environ. Sci 15, 640-647. 10.5829/idosi.aejaes.2015.15.4.12600

Iqbal, M. A., & Iqbal, A. (2015). Overview on sorghum for food, feed, forage and fodder: Opportunities and problems in Pakistan’s perspectives. Am.-Eurasian J. Agric. Environ. Sci 15, 1818-1826. 10.5829/idosi.aejaes.2015.15.9.1268

Johnson, L., Harrison, J., Davidson, D., Mahanna, W., Shinners, K., & Linder, D. (2002). Corn silage management: effects of maturity, inoculation, and mechanical processing on pack density and aerobic stability. Journal of dairy science 85, 434-444. https://doi.org/10.3168/jds.S0022-0302(02)74092-7 DOI: https://doi.org/10.3168/jds.S0022-0302(02)74092-7

Kung Jr, L., Robinson, J., Ranjit, N., Chen, J., Golt, C., & Pesek, J. (2000). Microbial populations, fermentation end-products, and aerobic stability of corn silage treated with ammonia or a propionic acid-based preservative. Journal of dairy science 83, 1479-1486. https://doi.org/10.3168/jds.S0022-0302(00)75020-X DOI: https://doi.org/10.3168/jds.S0022-0302(00)75020-X

Mohamed, R., & Chaudhry, A. S. (2008). Methods to study degradation of ruminant feeds. Nutrition Research Reviews 21, 68-81. https://doi.org/10.1017/S0954422408960674 DOI: https://doi.org/10.1017/S0954422408960674

Muck, R., Nadeau, E., McAllister, T., Contreras-Govea, F., Santos, M., & Kung Jr, L. (2018). Silage review: Recent advances and future uses of silage additives. Journal of dairy science 101, 3980-4000. https://doi.org/10.3168/jds.2017-13839 DOI: https://doi.org/10.3168/jds.2017-13839

National Academies of Sciences, E., & Medicine. (2016). Nutrient requirements of beef cattle.

Nazli, M. H., Halim, R. A., Abdullah, A. M., Hussin, G., & Samsudin, A. A. (2019). Potential of four corn varieties at different harvest stages for silage production in Malaysia. Asian-Australasian Journal of Animal Sciences 32, 224. DOI: https://doi.org/10.5713/ajas.18.0175

Oba, M., & Allen, M. (1999). Evaluation of the importance of the digestibility of neutral detergent fiber from forage: effects on dry matter intake and milk yield of dairy cows. Journal of dairy science 82, 589-596. https://doi.org/10.3168/jds.S0022-0302(99)75271-9 DOI: https://doi.org/10.3168/jds.S0022-0302(99)75271-9

Ogunade, I., Kim, D., Jiang, Y., Weinberg, Z., Jeong, K., & Adesogan, A. (2016). Control of Escherichia coli O157: H7 in contaminated alfalfa silage: Effects of silage additives. Journal of dairy science 99, 4427-4436. https://doi.org/10.3168/jds.2015-10766 DOI: https://doi.org/10.3168/jds.2015-10766

Pinho, R. G. V., Pereira, J. L. d. A. R., Reis, M. C. d., Rezende, A. V. d., & Castro Mata, D. d. (2011). Influence of stage of maturity on bromatological quality of corn forage. Revista Brasileira de Zootecnia 40, 1894-1901. DOI: https://doi.org/10.1590/S1516-35982011000900008

Rahjerdi, N. K., Rouzbehan, Y., Fazaeli, H., & Rezaei, J. (2015). Chemical composition, fermentation characteristics, digestibility, and degradability of silages from two amaranth varieties (Kharkovskiy and Sem), corn, and an amaranth–corn combination. Journal of Animal Science 93, 5781-5790. https://doi.org/10.2527/jas.2015-9494 DOI: https://doi.org/10.2527/jas.2015-9494

Rodrigues, R., Ramos, R. S., Rodrigues, M. M., Abdalla, A. L., Cabral, L. S., Araújo, D. L., Viciedo, D. O., Costa, C., Silva, E. C., & Barros, D. M. Fermentation Profile and Nutritional Value of Wilted ‘Pérola’Pineapple Plant Silage with Levels of Leucaena Hay as Additive. Available at SSRN 4391550. https://dx.doi.org/10.2139/ssrn.4391550 DOI: https://doi.org/10.2139/ssrn.4391550

Russell, J., Irlbeck, N., Hallauer, A., & Buxton, D. (1992). Nutritive value and ensiling characteristics of maize herbage as influenced by agronomic factors. Animal feed science and technology 38, 11-24. https://doi.org/10.1016/0377-8401(92)90072-E DOI: https://doi.org/10.1016/0377-8401(92)90072-E

Sarwar, M., & Khan, M. A. (2004). Influence of ad libitum feeding of urea-treated wheat straw with or without corn steep liquor on intake, in situ digestion kinetics, nitrogen metabolism, and nutrient digestion in Nili-Ravi buffalo bulls. Australian journal of agricultural research 55, 229-236. https://doi.org/10.1071/AR02236 DOI: https://doi.org/10.1071/AR02236

Sarwar, M., Khan, M. A., & Iqbal, Z. (2002). Status paper feed resources for livestock in Pakistan. Int. J. Agric. Biol 4, 186-192.

Schobin, J., & Haefner, G. (2019). A New Climate Externalities Food Knowledge Test Validated by Item Response Theory and Behavioral Data Prediction.

Silva, V., Pereira, O., Leandro, E., Da Silva, T., Ribeiro, K., Mantovani, H., & Santos, S. (2016). Effects of lactic acid bacteria with bacteriocinogenic potential on the fermentation profile and chemical composition of alfalfa silage in tropical conditions. Journal of dairy science 99, 1895-1902. https://doi.org/10.3168/jds.2015-9792 DOI: https://doi.org/10.3168/jds.2015-9792

Whiter, A., & Kung Jr, L. (2001). The effect of a dry or liquid application of Lactobacillus plantarum MTD1 on the fermentation of alfalfa silage. Journal of dairy science 84, 2195-2202. https://doi.org/10.3168/jds.S0022-0302(01)74666-8 DOI: https://doi.org/10.3168/jds.S0022-0302(01)74666-8

Wolf, D., Coors, J., Albrecht, K., Undersander, D., & Carter, P. (1993). Forage quality of maize genotypes selected for extreme fiber concentrations. Crop Science 33, 1353-1359. https://doi.org/10.2135/cropsci1993.0011183X003300060046x DOI: https://doi.org/10.2135/cropsci1993.0011183X003300060046x

Wolfrum, E. J., Lorenz, A. J., & DeLeon, N. (2009). Correlating detergent fiber analysis and dietary fiber analysis data for corn stover collected by NIRS. Cellulose 16, 577-585. DOI: https://doi.org/10.1007/s10570-009-9318-9

Zagorakis, K., Liamadis, D., Milis, C., Dotas, V., & Dotas, D. (2015). Nutrient digestibility and in situ degradability of alternatives to soybean meal protein sources for sheep. Small Ruminant Research 124, 38-44. https://doi.org/10.1016/j.smallrumres.2015.01.002 DOI: https://doi.org/10.1016/j.smallrumres.2015.01.002

Downloads

Published

2020-07-30

How to Cite

ZAFAR, M., AKBAR, F., IRTAZA, M., ZAFAR, M., SAEED, M., & KHALID, M. (2020). TAPPING INTO THE UNSUNG POTENTIAL OF MAIZE (ZEA MAYS L.) BASED SILAGE IN ANIMAL FEED INDUSTRY. Bulletin of Biological and Allied Sciences Research, 2020(1), 40. https://doi.org/10.54112/bbasr.v2020i1.40

Most read articles by the same author(s)

1 2 > >>