CONSTRUCTION OF THE INFECTIOUS MOLECULE OF BETA SATELLITE ASSOCIATED WITH AGERATUM YELLOW VEIN DISEASE OF AGERATUM CONYZOIDES

Authors

  • N AMJAD Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Pakistan
  • MSNU REHMAN Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Pakistan
  • MN KHALID Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • I AMJAD Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan

DOI:

https://doi.org/10.54112/bbasr.v2018i1.13

Keywords:

Ageratum conyzoides, beta satellite, Ageratum

Abstract

Several dicot plant species are mostly infected by the vast variety of begomoviruses in different areas around the globe. Begomoviruses exhibit association with two satellites molecules, alphasatellites and betasatellites which are involved to cause severe viral infection. Whitefly plays a vital role as a vector in the transmission of virus from one plant to another. These viruses use weeds to cause infections when the major crop plants are absent in the field. Ageratum conyzoides is very important weed plant, infected with a unique virus complex. The study is intended to evaluate the satellite molecule diversity associated with yellow vein disease of A.conyzoides. Symptomatic leave samples of field grown ageratum plants were collected from different areas of Faisalabad. Betasatellites were extracted from infected ageratum plants.To amplify the beta satellite component clones, the rolling circular amplification was applied on extracted DNA-β isolated from infectious weed plants.The confirmation of DNA-β was done with the help of restriction by different suitable enzymes. The betasatellites were mainly focused in this study. The DNA-β was completely sequenced and infectious molecule was made.

References

Andou, T., Yamaguchi, A., Kawano, S., Kawabe, K., Ueda, S., & Onuki, M. (2010). Ageratumyellow vein virus isolated from tomato plants with leaf curl on Ishigaki Island, Okinawa, Japan. Journal of general plant pathology76, 287-291. DOI: https://doi.org/10.1007/s10327-010-0239-0 DOI: https://doi.org/10.1007/s10327-010-0239-0

Bimboim, H. C., & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA nucleic acid research. Nucleic. Acids. Res.7, 1513-1523. DOI: https://doi.org/10.1093/nar/7.6.1513 DOI: https://doi.org/10.1093/nar/7.6.1513

Briddon, R. W., Bull, S. E., Mansoor, S., Amin, I., & Markham, P. (2002). Universal primers for the PCR-mediated amplification of DNA β. Molecular biotechnology 20, 315-318. DOI: https://doi.org/10.1385/MB:20:3:315 DOI: https://doi.org/10.1385/MB:20:3:315

Cohen, S. N., Chang, A. C., & Hsu, L. (1972). Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. U. S. A.69, 2110-2114. DOI: https://doi.org/10.1073/pnas.69.8.2110 DOI: https://doi.org/10.1073/pnas.69.8.2110

Huang, C., Xie, Y., Zhao, L., Ren, H., & Li, Z. (2013). A naturally occurring defective DNA satellite associated with a monopartite begomovirus: Evidence for recombination between alphasatellite and betasatellite. Viruses 5, 2116-2128. DOI: https://doi.org/10.3390/v5092116 DOI: https://doi.org/10.3390/v5092116

Ish-Horowicz, D., & Burke, J. F. (1981). Rapid and efficient cosmid cloning. Nucleic. Acids. Res. 9, 2989-2898. DOI: https://doi.org/10.1093/nar/9.13.2989 DOI: https://doi.org/10.1093/nar/9.13.2989

Jose, J., & Usha, R. (2003). Bhendi yellow vein mosaic disease in India is caused by association of a DNA β satellite with a begomovirus. Virology 305, 310-317. DOI: https://doi.org/10.1006/viro.2002.1768 DOI: https://doi.org/10.1006/viro.2002.1768

Kumar, J., Gunapati, S., Singh, S. P., Gadre, R., Sharma, N. C., & Tuli, R. (2013). Molecular characterization and pathogenicity of a carrot (Daucus carota) infecting begomovirus and associated betasatellite from India. Virus Research 178, 478-485. DOI: https://doi.org/10.1016/j.virusres.2013.10.010 DOI: https://doi.org/10.1016/j.virusres.2013.10.010

Leke, W. N., Brown, J. K., Ligthart, M. E., Sattar, N., Njualem, D. K., & Kvarnheden, A. (2012). Ageratum conyzoides: A host to a unique begomovirus disease complex in Cameroon. Virus Research 163, 229-237. DOI: https://doi.org/10.1016/j.virusres.2011.09.039 DOI: https://doi.org/10.1016/j.virusres.2011.09.039

Saunders, K., Bedford, I. D., & Stanley, J. (2001). Pathogenicity of a natural recombinant associated with ageratum yellow vein disease: implications for geminivirus evolution and disease aetiology. Virology 282, 38-47. DOI: https://doi.org/10.1006/viro.2000.0832 DOI: https://doi.org/10.1006/viro.2000.0832

Saunders, K., Bedford, I. D., & Stanley, J. (2002). Adaptation from whitefly to leafhopper transmission of an autonomously replicating nanovirus-like DNA component associated with ageratum yellow vein disease. Journal of general virology 83, 907-913. DOI: https://doi.org/10.1099/0022-1317-83-4-907 DOI: https://doi.org/10.1099/0022-1317-83-4-907

Saunders, K., Bedford, I. D., Briddon, R. W., Markham, P. G., Wong, S. M., & Stanley, J. (2000). A unique virus complex causes Ageratum yellow vein disease. Proceedings of the National Academy of Sciences 97, 6890-6895. DOI: https://doi.org/10.1073/pnas.97.12.6890 DOI: https://doi.org/10.1073/pnas.97.12.6890

Saunders, K., Briddon, R. W., & Stanley, J. (2008). Replication promiscuity of DNA-β satellites associated with monopartite begomoviruses; deletion mutagenesis of the Ageratum yellow vein virus DNA-β satellite localizes sequences involved in replication. Journal of general virology 89, 3165-3172. DOI: https://doi.org/10.1099/vir.0.2008/003848-0 DOI: https://doi.org/10.1099/vir.0.2008/003848-0

Saunders, K., Norman, A., Gucciardo, S., & Stanley, J. (2004). The DNA β satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (βC1). Virology 324, 37-47. DOI: https://doi.org/10.1016/j.virol.2004.03.018 DOI: https://doi.org/10.1016/j.virol.2004.03.018

Saunders, K., Salim, N., Mali, V. R., Malathi, V. G., Briddon, R., Markham, P. G., & Stanley, J. (2002). Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology 293, 63-74. DOI: https://doi.org/10.1006/viro.2001.1251 DOI: https://doi.org/10.1006/viro.2001.1251

Shahid, M. S., Ikegami, M., Waheed, A., Briddon, R. W., & Natsuaki, K. T. (2014). Association of an alphasatellite with tomato yellow leaf curl virus and ageratum yellow vein virus in Japan is suggestive of a recent introduction. Viruses 6, 189-200. DOI: https://doi.org/10.3390/v6010189 DOI: https://doi.org/10.3390/v6010189

Tahir, M., Amin, I., Haider, M. S., Mansoor, S., & Briddon, R. W. (2015). Ageratum enation virus—A Begomovirus of Weeds with the Potential to Infect Crops. Viruses 7, 647-665. DOI: https://doi.org/10.3390/v7020647 DOI: https://doi.org/10.3390/v7020647

Tao, X., & Zhou, X. (2008). Pathogenicity of a naturally occurring recombinant DNA satellite associated with tomato yellow leaf curl China virus. Journal of general virology 89, 306-311. DOI: https://doi.org/10.1099/vir.0.83388-0 DOI: https://doi.org/10.1099/vir.0.83388-0

Ueda, S., Onuki, M., Yamashita, M., & Yamato, Y. (2012). Pathogenicity and insect transmission of a begomovirus complex between tomato yellow leaf curl virus and Ageratum yellow vein betasatellite. Virus genes 44, 338-344. DOI: https://doi.org/10.1007/s11262-011-0691-8 DOI: https://doi.org/10.1007/s11262-011-0691-8

Xiong, Q., Fan, S., Wu, J., & Zhou, X. (2007). Ageratum yellow vein China virus is a distinct begomovirus species associated with a DNAβ molecule. Phytopathology97, 405-411. DOI: https://doi.org/10.1094/PHYTO-97-4-0405 DOI: https://doi.org/10.1094/PHYTO-97-4-0405

Downloads

Published

2018-11-26

How to Cite

AMJAD, N., REHMAN, M., KHALID, M., & AMJAD, I. (2018). CONSTRUCTION OF THE INFECTIOUS MOLECULE OF BETA SATELLITE ASSOCIATED WITH AGERATUM YELLOW VEIN DISEASE OF AGERATUM CONYZOIDES. Bulletin of Biological and Allied Sciences Research, 2018(1), 13. https://doi.org/10.54112/bbasr.v2018i1.13

Most read articles by the same author(s)

1 2 > >>