INTEGRATING GENOMICS AND BIOTECHNOLOGICAL APPROACHES TO ENHANCE ABIOTIC STRESS TOLERANCE IN SESAME (SESAMUM INDICUM L.)

Authors

  • H BASHIR Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • MN KHALID Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • I AJMAD Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • F ULLAH Department of Plant Breeding and Genetics, University of Agriculture Peshawar, Pakistan
  • A AMMAR Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan

DOI:

https://doi.org/10.54112/bbasr.v2023i1.37

Keywords:

Sesame, Abiotic stress, drought, salinity, genomics, Genome-wide association studies, Genomic selection, CRISPR-Cas9, RNA interference, Plant breeding, Crop improvement

Abstract

Sesame (Sesamum indicum L.) is an ancient oilseed crop cultivated for its rich oil, protein, and essential nutrients. However, changing environmental conditions due to climate change poses significant challenges to sesame production. Abiotic stresses, such as salinity and drought, can severely impact sesame yield and productivity. Integrating genomic approaches and biotechnology in sesame breeding offers significant promise for developing resilient sesame cultivars with enhanced abiotic stress tolerance. GWAS (Genome-wide association studies) have identified genes and QTL (quantitative trait loci) associated with drought and salinity tolerance in sesame. The genomic selection offers several advantages over traditional breeding methods, enabling the efficient development of stress-tolerant sesame cultivars. Biotechnological tools, such as CRISPR-Cas9 genome editing technology, allow for precise modification of specific genes, facilitating the introduction of desirable traits into sesame cultivars. The integration of these approaches offers promising opportunities for the targeted improvement of tolerance against abiotic stresses in sesame. However, addressing ethical and regulatory considerations surrounding the use of biotechnology in plant breeding will be vital for ensuring the safe and responsible application of these technologies. This review paper provides an overview of integrating genomic approaches and biotechnology in sesame breeding programs focused on improving drought and salinity tolerance and discusses the potential for developing resilient sesame cultivars in the face of climate change.

Downloads

Download data is not yet available.

References

Aerni, P. (2005). Stakeholder attitudes towards the risks and benefits of genetically modified crops in South Africa. Environmental Science & Policy, 8(5), 464-476. https://doi.org/10.1016/j.envsci.2005.06.006 DOI: https://doi.org/10.1016/j.envsci.2005.07.001

Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., ... & Liu, D. R. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 57(7785), 149-157. https://doi.org/10.1038/s41586-019-1711-4 DOI: https://doi.org/10.1038/s41586-019-1711-4

Bassi, F. M., Bentley, A. R., Charmet, G., Ortiz, R., & Crossa, J. (2016). Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Science, 242, 23-36. https://doi.org/10.1016/j.plantsci.2015.08.021 DOI: https://doi.org/10.1016/j.plantsci.2015.08.021

Baulcombe, D. (2015). RNA silencing in plants. Nature, 457(7228), 396-404.

Bedigian, D. (2010). Cultivated sesame and wild relatives in the genus Sesamum L. In J. Janick (Ed.), Horticultural Reviews 37 125-218. John Wiley & Sons, Inc. DOI: https://doi.org/10.1201/b13601

Bellon, M. R., & Berthaud, J. (2004). Transgenic maize and the evolution of landrace diversity in Mexico. The importance of farmers' behavior. Plant Physiology, 134(3), 883-888. https://doi.org/10.1104/pp.103.038331 DOI: https://doi.org/10.1104/pp.103.038331

Bernardo, R., & Yu, J. (2007). Prospects for genomewide selection for quantitative traits in maize. Crop Science, 47(3), 1082-1090. https://doi.org/10.2135/cropsci2006.11.0690 DOI: https://doi.org/10.2135/cropsci2006.11.0690

Brodersen, P., & Voinnet, O. (2006). The diversity of RNA silencing pathways in plants. Trends in genetics, 22(5), 268-280. DOI: https://doi.org/10.1016/j.tig.2006.03.003

Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70, 667-697. DOI: https://doi.org/10.1146/annurev-arplant-050718-100049

Cobb, J. N., DeClerck, G., Greenberg, A., Clark, R., & McCouch, S. (2013). Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics, 126(4), 867-887. https://doi.org/10.1007/s00122-013-2066-0 DOI: https://doi.org/10.1007/s00122-013-2066-0

Collard, B. C., & Mackill, D. J. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 557-572. https://doi.org/10.1098/rstb.2007.2170 DOI: https://doi.org/10.1098/rstb.2007.2170

Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., de los Campos, G., ... & Dreisigacker, S. (2017). Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science, 22(11), 961-975. https://doi.org/10.1016/j.tplants.2017.08.011

Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., de Los Campos, G., Burgueño, J., González-Camacho, J. M., Pérez-Elizalde, S., Beyene, Y., Dreisigacker, S., Singh, R., Zhang, X., Gowda, M., Roorkiwal, M., Rutkoski, J., & Varshney, R. K. (2017). Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science, 22(11), 961-975. https://doi.org/10.1016/j.tplants.2017.08.011 DOI: https://doi.org/10.1016/j.tplants.2017.08.011

Davison, J., & Ammann, K. (2017). New GMO regulations for old: Determining a new future for EU crop biotechnology. GM Crops & Food, 8(1), 13-34. https://doi.org/10.1080/21645698.2016.1261787 DOI: https://doi.org/10.1080/21645698.2017.1289305

Delgado, A., Kjølberg, K. L., & Wickson, F. (2011). Public engagement coming of age: From theory to practice in STS encounters with nanotechnology. Public Understanding of Science, 20(6), 826-845. https://doi.org/10.1177/0963662510363054 DOI: https://doi.org/10.1177/0963662510363054

Domingo, J. L., & Bordonaba, J. G. (2011). A literature review on the safety assessment of genetically modified plants. Environment International, 37(4), 734-742. https://doi.org/10.1016/j.envint.2011.01.003 DOI: https://doi.org/10.1016/j.envint.2011.01.003

Dossa, K., Diouf, D., & Cissé, N. (2016). An Integrated Genomic and Morphological Approach to Decipher the Complex Evolution of East-Asian Sesame (Sesamum indicum L.). Frontiers in Plant Science, 7, 1183. https://doi.org/10.3389/fpls.2016.01183

Dossa, K., Diouf, D., & Cissé, N. (2016). Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response. Frontiers in Plant Science, 7, 1522. https://doi.org/10.3389/fpls.2016.01522 DOI: https://doi.org/10.3389/fpls.2016.01522

Dossa, K., Diouf, D., & Cissé, N. (2017). Whole-genome resequencing reveals adaptive molecular evolution of the water use efficiency in African cultivated sesame (Sesamum indicum) under drought stress. BMC Plant Biology, 17(1), 214. https://doi.org/10.1186/s12870-017-1152-y

Dossa, K., Diouf, D., Wang, L., Wei, X., Zhang, Y., Niang, M., ... & Cissé, N. (2016). The emerging oilseed crop Sesamum indicum enters the “Omics” era. Frontiers in Plant Science, 7, 912. https://doi.org/10.3389/fpls.2016.00912 DOI: https://doi.org/10.3389/fpls.2017.01154

Dossa, K., Li, D., Yu, J., Wang, L., & Zhang, Y. (2018). Dynamic transcriptome landscape of sesame (Sesamum indicum L.) under progressive drought and after rewatering. Genomics Data, 14, 1-4. https://doi.org/10.1016/j.gdata.2017.11.001

Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. https://doi.org/10.1126/science.1258096 DOI: https://doi.org/10.1126/science.1258096

Ellstrand, N. C. (2003). Dangerous liaisons? When cultivated plants mate with their wild relatives. JHU Press. DOI: https://doi.org/10.56021/9780801874055

European Commission. (2020). Study on the status of new genomic techniques under Union law and in light of the Court of Justice ruling in Case C-528/16.

Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., ... & Saud, S. (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, 8, 1147. https://doi.org/10.3389/fpls.2017.01147 DOI: https://doi.org/10.3389/fpls.2017.01147

FAOSTAT. (2021). Food and Agriculture Organization of the United Nations, Statistics Division. Retrieved from http://www.fao.org/faostat/en/#data/QC

Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806-811. https://doi.org/10.1038/35888 DOI: https://doi.org/10.1038/35888

Frewer, L. J., van der Lans, I. A., Fischer, A. R., Reinders, M. J., Menozzi, D., Zhang, X., ... & Zimmermann, K. L. (2013). Public perceptions of agri-food applications of genetic modification–A systematic review and meta-analysis. Trends in Food Science & Technology, 30(2), 142-152. https://doi.org/10.1016/j.tifs.2013.01.003 DOI: https://doi.org/10.1016/j.tifs.2013.01.003

Gaj, T. (2019). Plant genome editing: achievements, opportunities, and challenges. In Genome Editing in Plants (pp. 1-24). Academic Press. https://doi.org/10.1016/B978-0-12-817197-6.00001-5

Hannon, G. J. (2002). RNA interference. Nature, 418(6894), 244-251. https://doi.org/10.1038/418244a DOI: https://doi.org/10.1038/418244a

Hassan, F. U., Awan, S. I., & Chaudhary, M. A. (2020). Sesame (Sesamum indicum L.): A potential oilseed crop for marginal lands. Sustainable Agriculture Reviews 42 (pp. 1-21). Springer, Cham. https://doi.org/10.1007/978-3-030-46414-2_1

Hayes, B. J., Bowman, P. J., Chamberlain, A. J., & Goddard, M. E. (2009). Invited review: Genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science, 92(2), 433-443. https://doi.org/10.3168/jds.2008-1646 DOI: https://doi.org/10.3168/jds.2008-1646

Heffner, E. L., Sorrells, M. E., & Jannink, J. L. (2009). Genomic selection for crop improvement. Crop Science, 49(1), 1-12. https://doi.org/10.2135/cropsci2008.08.0512 DOI: https://doi.org/10.2135/cropsci2008.08.0512

Herring, R. J. (2007). The genomics revolution and development studies: Science, poverty and politics. Journal of Development Studies, 43(1), 1-30. https://doi.org/10.1080/00220380601055531 DOI: https://doi.org/10.1080/00220380601055502

Hirschhorn, J. N., & Daly, M. J. (2005). Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics, 6(2), 95-108. https://doi.org/10.1038/nrg1521 DOI: https://doi.org/10.1038/nrg1521

IPCC. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Jannink, J. L., Lorenz, A. J., & Iwata, H. (2010). Genomic selection in plant breeding: from theory to practice. Briefings in Functional Genomics, 9(2), 166-177. https://doi.org/10.1093/bfgp/elq001

Jannink, J. L., Lorenz, A. J., & Iwata, H. (2010). Genomic selection in plant breeding: from theory to practice. Briefings in Functional Genomics, 9(2), 166-177. https://doi.org/10.1093/bfgp/elq001 DOI: https://doi.org/10.1093/bfgp/elq001

Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), e188. https://doi.org/10.1093/nar/gkt780

Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), e188. https://doi.org/10.1093/nar/gkt780 DOI: https://doi.org/10.1093/nar/gkt780

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. https://doi.org/10.1126/science.1225829 DOI: https://doi.org/10.1126/science.1225829

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420-424. https://doi.org/10.1038/nature17946 DOI: https://doi.org/10.1038/nature17946

Korte, A., & Farlow, A. (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods, 9(1), 29. https://doi.org/10.1186/1746-4811-9-29 DOI: https://doi.org/10.1186/1746-4811-9-29

Kuzma, J., & Kokotovich, A. (2011). Renegotiating GM crop regulation: Targeted gene-modification technology raises new issues for the oversight of genetically modified crops. EMBO reports, 12(9), 883-888. https://doi.org/10.1038/embor.2011.159 DOI: https://doi.org/10.1038/embor.2011.160

Kuzma, J., & Kokotovich, A. (2011). Renegotiating the social contract for science: Socio-technical integration for responsible research and innovation. Science and Engineering Ethics, 17(4), 699-725.

Lassen, J., Madsen, K. H., & Sandøe, P. (2002). Ethics and genetic engineering—lessons to be learned from GM foods. Bioprocess and Biosystems Engineering, 24(5), 263-271. https://doi.org/10.1007/s004490100216 DOI: https://doi.org/10.1007/s004490100262

Li, C., Feng, J., Xu, Z., Liu, G., Hu, Y., Wang, L., ... & Chen, M. (2019). Genome-wide association study dissects the genetic architecture underlying salt tolerance in sesame. Genes, 10(12), 978.

Li, C., Zong, Y., Wang, Y., Jin, S., & Zhang, D. (2020). Precise gene replacement in rice by RNA transcript-templated homologous recombination. Nature biotechnology, 38(12), 1396-1401.

Li, H., Wang, L., Gao, W., Yuan, H., Zhang, X., Zhou, R., & Wang, H. (2018). Genome-wide association studies for five forage quality-related traits in Sorghum (Sorghum bicolor L.). Frontiers in Plant Science, 9, 1146. https://doi.org/10.3389/fpls.2018.01146 DOI: https://doi.org/10.3389/fpls.2018.01146

Li, X., Wang, L., Chen, H., Li, Z., & Zhang, Y. (2021). Genetic dissection of seed quality traits in sesame using genome-wide association study and genomic selection. Theoretical and Applied Genetics, 134(6), 1941-1957. https://doi.org/10.1007/s00122-021-03777-2

Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616-620. https://doi.org/10.1126/science.1204531 DOI: https://doi.org/10.1126/science.1204531

Lucht, J. M. (2015). Public acceptance of plant biotechnology and GM crops. Viruses, 7(8), 4254-4281. https://doi.org/10.3390/v7082819 DOI: https://doi.org/10.3390/v7082819

Mallory, A. C., & Vaucheret, H. (2010). Form, function, and regulation of ARGONAUTE proteins. The Plant Cell, 22(12), 3879-3889. DOI: https://doi.org/10.1105/tpc.110.080671

Meuwissen, T. H., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829.

Meuwissen, T. H., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829. https://doi.org/10.1093/genetics/157.4.1819 DOI: https://doi.org/10.1093/genetics/157.4.1819

National Academies of Sciences, Engineering, and Medicine. (2016). Genetically engineered crops: Experiences and prospects. The National Academies Press.

Pathak, N., Rai, A. K., Kumari, R., & Bhat, K. V. (2014). Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacognosy Reviews, 8(16), 147-155. https://doi.org/10.4103/0973-7847.134249 DOI: https://doi.org/10.4103/0973-7847.134249

Purnhagen, K. P., Kok, E., Kleter, G., Schebesta, H., Visser, R. G., & Wesseler, J. (2018). The European Union Court's Advocate General's opinion and new plant breeding techniques. Nature Biotechnology, 36(7), 573-575. https://doi.org/10.1038/nbt.4154 DOI: https://doi.org/10.1038/nbt.4174

Sanvido, O., Widmer, F., Winzeler, M., Streit, B., & Bigler, F. (2015). Ecological effects of genetically modified crops: Ten years of field research and commercial cultivation. Advances in Agronomy, 131, 1-56.

Schaeffer, L. R. (2006). Strategy for applying genome-wide selection in dairy cattle. Journal of Animal Breeding and Genetics, 123(4), 218-223. https://doi.org/10.1111/j.1439-0388.2006.00595.x DOI: https://doi.org/10.1111/j.1439-0388.2006.00595.x

Sharma, P., Singh, V., & Pandey, A. (2020). Identification of candidate genes and molecular markers associated with phyllody disease resistance in sesame (Sesamum indicum L.). Crop Science, 60(6), 2927-2939. https://doi.org/10.1002/csc2.20276 DOI: https://doi.org/10.1002/csc2.20276

Singha DL, Das D, Sarki YN, Chowdhury N, Sharma M, Maharana J, Chikkaputtaiah C (2022). Harnessing tissue-specific genome editing in plants through CRISPR/Cas system: Current state and future prospects. Planta. 255:1-7. DOI: https://doi.org/10.1007/s00425-021-03811-0

Takele F, Abera G (2023). Variability Study in Ethiopian Sesame (Sesamum indicum L.) Genotypes at Western Oromia. Precis. Agric. 1(1):1-7.

The Ministry of the Environment, Government of Japan. (2020). Guidelines for the Environmental Risk Assessment of Genome-edited Plants.

Urushihara, Y., Matsui, T., & Fujimoto, Y. (2020). Genome editing in Japanese agriculture: Policies and research trends. In Handbook of Genome Editing (pp. 413-426). Springer, Cham.

Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genic microsatellite markers in plants: features and applications. Trends in Biotechnology, 23(1), 48-55. https://doi.org/10.1016/j.tibtech.2004.11.005 DOI: https://doi.org/10.1016/j.tibtech.2004.11.005

Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genomics-assisted breeding for crop improvement. Trends in Plant Science, 10(12), 621-630. https://doi.org/10.1016/j.tplants.2005.10.004 DOI: https://doi.org/10.1016/j.tplants.2005.10.004

Varshney, R. K., Hoisington, D. A., & Tyagi, A. K. (2005). Advances in cereal genomics and applications in crop breeding. Trends in Biotechnology, 23(11), 570-578. https://doi.org/10.1016/j.tibtech.2005.08.006 DOI: https://doi.org/10.1016/j.tibtech.2006.08.006

Varshney, R. K., Thudi, M., Roorkiwal, M., He, W., Upadhyaya, H. D., Yang, W., ... & Gaur, P. M. (2018). Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication, and agronomic traits. Nature Genetics, 50(5), 677-687. https://doi.org/10.1038/s41588-018-0109-3 DOI: https://doi.org/10.1038/s41588-019-0401-3

Wang, H., La Russa, M., & Qi, L. S. (2018). CRISPR/Cas9 in genome editing and beyond. Annual review of biochemistry, 87, 271-294.

Wang, L., Xia, Q., Zhang, Y., Zhu, X., Zhu, X., Li, D., ... & Zhang, X. (2019). Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genomics, 20(1), 1-11. https://doi.org/10.1186/s12864-018-5407-7

Wang, L., Xia, Q., Zhang, Y., Zhu, X., Zhu, X., Li, D., ... & Zhang, X. (2016). Genome-wide identification and characterization of DREB gene family in sesame and expression analysis of the genes in response to drought stress. Frontiers in plant science, 7, 1604.

Wang, L., Xia, Q., Zhang, Y., Zhu, X., Zhu, X., Li, D., Ni, X., Gao, Y., Xiang, H., Wei, X., & Yu, J. (2018). Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genomics, 19(1), 31. https://doi.org/10.1186/s12864-017-4429-8

Wang, L., Xia, Q., Zhang, Y., Zhu, X., Zhu, X., Li, D., Ni, X., Gao, Y., Xiang, H., Wei, X., & Yu, J. (2018). Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genomics, 19(1), 31. https://doi.org/10.1186/s12864-017-4429-8

Wang, L., Yu, J., Li, D., & Zhang, X. (2014). Sinbase: An integrated database to study genomics, genetics and comparative genomics in Sesamum indicum. Plant and Cell Physiology, 56(1), e2. https://doi.org/10.1093/pcp/pcu175 DOI: https://doi.org/10.1093/pcp/pcu175

Wang, L., Yu, S., Tong, C., Zhao, Y., Liu, Y., Song, C., Zhang, Y., Zhang, X., Wang, Y., Hua, W., Li, D., Li, D., Li, F., Yu, J., Xu, C., Han, X., Huang, S., & Tai, S. (2014). Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biology, 15(2), R39. https://doi.org/10.1186/gb-2014-15-2-r39 DOI: https://doi.org/10.1186/gb-2014-15-2-r39

Wei, W., Zhang, Y., Han, L., Guan, Z., Chai, T., Zhao, L., ... & Chen, M. (2016). Genome-wide identification and expression analysis of the WRKY gene family in sesame. Plant growth regulation, 79(2), 125-141.

Wei, W., Zhang, Y., Lv, H., Li, D., Wang, L., & Zhang, X. (2017). The molecular mechanism of sporophytic self-incompatibility in Ginkgo biloba L. BMC Genomics, 18(1), 844. https://doi.org/10.1186/s12864-017-4230-8

Wei, X., Liu, K., Zhang, Y., Feng, Q., Wang, L., Zhao, Y., ... & Li, Y. (2015). Genetic discovery for oil production and quality in sesame. Nature Communications, 6, 8609. https://doi.org/10.1038/ncomms9609 DOI: https://doi.org/10.1038/ncomms9609

Wei, X., Liu, K., Zhang, Y., Feng, Q., Wang, L., Zhao, Y., ... & Zhang, X. (2019). Genetic discovery for oil production and quality in sesame. Nature Communications, 10(1), 1-13. https://doi.org/10.1038/s41467-019-12014-1

Were, B. A., Onkware, A. O., Gudu, S., Welander, M., & Carlsson, A. S. (2006). Seed oil content and fatty acid composition in East African sesame (Sesamum indicum L.) accessions evaluated over 3 years. Field Crops Research, 97(2-3), 254-260. https://doi.org/10.1016/j.fcr.2005.10.010 DOI: https://doi.org/10.1016/j.fcr.2005.10.009

Wolt, J. D., Wang, K., & Yang, B. (2016). The regulatory status of genome-edited crops. Plant Biotechnology Journal, 14(2), 510-518. https://doi.org/10.1111/pbi.12444 DOI: https://doi.org/10.1111/pbi.12444

Wu, K., Yang, M., Liu, H., Tao, Y., Mei, J., & Zhao, Y. (2014). Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using Insertion-Deletion (InDel) and Simple Sequence Repeat (SSR) markers. BMC Genetics, 15, 35. https://doi.org/10.1186/1471-2156-15-35

Wu, K., Yang, M., Liu, H., Tao, Y., Mei, J., & Zhao, Y. (2014). Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using Insertion-Deletion (InDel) and Simple Sequence Repeat (SSR) markers. BMC Genetics, 15, 35. https://doi.org/10.1186/1471-2156-15-35 DOI: https://doi.org/10.1186/1471-2156-15-35

Yadav, S., Sandhu, N., Majee, M., & Modi, P. (2021). Abiotic stress signaling in plants: Functional genomic intervention for crop improvement. In Abiotic Stress Signaling in Plants: Functional Genomic Intervention 2 1-30. Springer, Singapore. https://doi.org/10.1007/978-981-15-9040-0_1

Yu, K., Wang, L., Zhao, X., Yuan, C., Wang, X., Zhang, Y., ... & Li, D. (2020). Evaluation of genomic selection for improving yield and quality traits in sesame. Frontiers in Plant Science, 11, 835. https://doi.org/10.3389/fpls.2020.00835 DOI: https://doi.org/10.3389/fpls.2020.00835

Zhang, B., Yang, Y., Chen, T., Yu, W., Liu, T., Li, H., ... & Zhang, H. (2011). Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. PLoS ONE, 6(12), e28257. https://doi.org/10.1371/journal.pone.0028257 DOI: https://doi.org/10.1371/journal.pone.0051091

Zhang, H., Gao, S., Lercher, M. J., Hu, S., & Chen, W. H. (2013). EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic acids research, 41(W1), W270-W275. DOI: https://doi.org/10.1093/nar/gks576

Zhang, H., Miao, H., Li, C., Wei, L., Duan, Y., Ma, Q., ... & Zhang, T. (2019). SLAF-seq uncovers large numbers of splice_donor_variant and copy number variation regions related to oil content in sesame. BMC Genomics, 20(1), 502. https://doi.org/10.1186/s12864-019-5887-4

Zhang, H., Miao, H., Li, C., Wei, L., Duan, Y., Ma, Q., Kong, J., Xu, F., Chang, S., & Wang, Z. (2019). SLAF-based high-density genetic map construction and QTL mapping for major economic traits in sea urchin Strongylocentrotus intermedius. BMC Genomics, 20(1), 996. https://doi.org/10.1186/s12864-019-6393-6 DOI: https://doi.org/10.1038/s41598-017-18768-y

Zhang, H., Miao, H., Wei, L., Li, C., Zhao, R., & Wang, C. (2020). Genetic analysis of salt tolerance-associated traits in sesame (Sesamum indicum L.) using a recombinant inbred line population. Euphytica, 216(4), 1-17. https://doi.org/10.1007/s10681-020-02603-5

Zhang, X., Liu, X., Zhang, D., Tang, H., Sun, B., Li, C., & Wang, Y. (2019). Genome-wide analysis of the WRKY gene family in sesame reveals their involvement in abiotic stress response. International journal of molecular sciences, 20(9), 2279.

Zhang, Y., Wang, L., Xia, H., Zhao, X., Hou, L., Li, H., ... & Li, D. (2021). Genome-wide association study of multiple yield-related traits in diverse sesame germplasm. Industrial Crops and Products, 161, 113-203. https://doi.org/10.1016/j.indcrop.2020.113203 DOI: https://doi.org/10.1016/j.indcrop.2020.113203

Zhou, R., Cheng, W., Yang, R., & Wang, H. (2020). SesameFG: an integrated database for the functional genomics of sesame. Scientific Reports, 10(1), 11523. https://doi.org/10.1038/s41598-020-68235-4 DOI: https://doi.org/10.1038/s41598-020-68235-4

Zhou, R., Dossa, K., Li, D., Yu, J., You, J., Wei, X., & Zhang, X. (2020). SesameFG: an integrated database for the functional genomics of sesame. Scientific Reports, 10(1), 16995. https://doi.org/10.1038/s41598-020-74038-6

Downloads

Published

2023-05-29

How to Cite

BASHIR, H., KHALID, M., AJMAD, I., ULLAH, F., & AMMAR, A. (2023). INTEGRATING GENOMICS AND BIOTECHNOLOGICAL APPROACHES TO ENHANCE ABIOTIC STRESS TOLERANCE IN SESAME (SESAMUM INDICUM L.). Bulletin of Biological and Allied Sciences Research, 2023(1), 37. https://doi.org/10.54112/bbasr.v2023i1.37

Most read articles by the same author(s)

1 2 > >>