• MM JAVED Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • A SAMI Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • MZ HAIDER Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • A ABBAS Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • MH ALI Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • S NAEEM Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • M AMJAD Department of Botany, Government Graduate College Township Lahore, Pakistan
  • A AHMAD Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • R BOSTANI Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan



Genetic Engineering, QTLs, Transgenic, traits, yield


Breeders' main goal is to increase the proportion of high-quality rice produced overall. To create effective rice breeding strategies, possible yield-related loci have been mined. many researchers are using transgenic strategies as cutting-edge methods to increase rice productivity. Quantitative trait loci (QTLs) play a pivotal role in governing grain yield in Oryza sativa L., commonly known as rice. The genes contributing to QTLs that determine grain size, length, and weight have been successfully identified. Numerous genes are upregulated to enhance the overall yield of rice. Recent advancements have led to the discovery of genes and QTLs specifically associated with rice yield. Through an in-depth analysis of various yield characteristics, including grain weight, thousand grain weight, grain length, grain width, grain yield per plant, grain number per panicle, and panicles per plant, we conducted a comprehensive review using extensive literature research and public domain databases. Additionally, we explored the progress made in transgenic technology and advanced genomic techniques. The compiled information on genes and QTLs related to yield enhancement aims to provide a valuable resource. The integrated analysis of existing data on genes and/or QTLs provide evidence on potential combinations for creating superior genotypes that combine high yield across multiple traits. Integration of molecular markers, transgenic techniques and conventional breeding as discussed in this extensive review opens up the prospect of developing high yielding rice varieties


Abaza, A. S., Elshamly, A. M., Alwahibi, M. S., Elshikh, M. S., and Ditta, A. (2023). Impact of different sowing dates and irrigation levels on NPK absorption, yield and water use efficiency of maize. Scientific Reports 13, 12956. DOI:

Ashikari, M., Wu, J., Yano, M., Sasaki, T., and Yoshimura, A. J. P. o. t. N. A. o. S. (1999). Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. 96, 10284-10289. DOI:

Bai, X., Wu, B., and Xing, Y. J. J. o. I. P. B. (2012). Yield‐related QTLs and their applications in rice genetic improvement F. 54, 300-311. DOI:

Birla, D. S., Malik, K., Sainger, M., Chaudhary, D., Jaiwal, R., and Jaiwal, P. K. (2017). Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.). Critical Reviews in Food Science and Nutrition 57, 2455-2481. DOI:

Chan, A. N., Wang, L.-L., Zhu, Y.-J., Fan, Y.-Y., Zhuang, J.-Y., Zhang, Z.-H. J. T., and Genetics, A. (2021). Identification through fine mapping and verification using CRISPR/Cas9-targeted mutagenesis for a minor QTL controlling grain weight in rice. 134, 327-337. DOI:

Che, R., Tong, H., Shi, B., Liu, Y., Fang, S., Liu, D., Xiao, Y., Hu, B., Liu, L., and Wang, H. J. N. p. (2015). Control of grain size and rice yield by GL2-mediated brassinosteroid responses. 2, 1-8. DOI:

Cho, J.-I., Kim, H.-B., Kim, C.-Y., Hahn, T.-R., Jeon, J.-S. J. M., and Cells (2011). Identification and characterization of the duplicate rice sucrose synthase genes OsSUS5 and OsSUS7 which are associated with the plasma membrane. 31, 553-561. DOI:

Clement, W. K. F., Wong, M. Y., Jugah, K., and Maziah, M. J. P. J. o. S. R. R. (2017). Producing Transgenic Rice with Improved Traits and Yield–How Far Have We Come? 3.

Dhungana, S., Kim, B. R., Son, J. H., Kim, H. R., and Shin, D. H. (2015). Comparative study of CaMsrB2 gene containing drought‐tolerant transgenic rice (Oryza sativa L.) and non‐transgenic counterpart. Journal of Agronomy and Crop Science 201, 10-16. DOI:

Dong, N.-Q., Sun, Y., Guo, T., Shi, C.-L., Zhang, Y.-M., Kan, Y., Xiang, Y.-H., Zhang, H., Yang, Y.-B., and Li, Y.-C. J. N. c. (2020). UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. 11, 1-16. DOI:

Duan, P., Xu, J., Zeng, D., Zhang, B., Geng, M., Zhang, G., Huang, K., Huang, L., Xu, R., and Ge, S. J. M. p. (2017). Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. 10, 685-694. DOI:

Ermakova, M., Danila, F. R., Furbank, R. T., and von Caemmerer, S. J. T. P. J. (2020). On the road to C4 rice: advances and perspectives. 101, 940-950. DOI:

Fan, C., Wang, G., Wang, Y., Zhang, R., Wang, Y., Feng, S., Luo, K., and Peng, L. J. I. j. o. m. s. (2019). Sucrose synthase enhances hull size and grain weight by regulating cell division and starch accumulation in transgenic rice. 20, 4971. DOI:

Fujita, D., Trijatmiko, K. R., Tagle, A. G., Sapasap, M. V., Koide, Y., Sasaki, K., Tsakirpaloglou, N., Gannaban, R. B., Nishimura, T., and Yanagihara, S. J. P. o. t. N. A. o. S. (2013). NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. 110, 20431-20436. DOI:

Gao, Q., Li, G., Sun, H., Xu, M., Wang, H., Ji, J., Wang, D., Yuan, C., and Zhao, X. J. I. j. o. m. s. (2020). Targeted mutagenesis of the rice FW 2.2-like gene family using the CRISPR/Cas9 system reveals OsFWL4 as a regulator of tiller number and plant yield in rice. 21, 809. DOI:

Gao, Q., Zhang, N., Wang, W.-Q., Shen, S.-Y., Bai, C., and Song, X.-J. J. T. P. C. (2021). The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice. 33, 3331-3347. DOI:

Haider, M. Z., Sami, A., Shafiq, M., Anwar, W., Ali, S., Ali, Q., Muhammad, S., Manzoor, I., Shahid, M. A., and Ali, D. (2023). Genome-wide identification and in-silico expression analysis of carotenoid cleavage oxygenases gene family in Oryza sativa (rice) in response to abiotic stress. Frontiers in Plant Science 14. DOI:

Hakata, M., Kuroda, M., Ohsumi, A., Hirose, T., Nakamura, H., Muramatsu, M., Ichikawa, H., Yamakawa, H. J. B., Biotechnology,, and Biochemistry (2012). Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem. 76, 2129-2134. DOI:

Hirose, T., Aoki, N., Harada, Y., Okamura, M., Hashida, Y., Ohsugi, R., Akio, M., Hirochika, H., and Terao, T. J. F. i. P. S. (2013). Disruption of a rice gene for α-glucan water dikinase, OsGWD1, leads to hyperaccumulation of starch in leaves but exhibits limited effects on growth. 4, 147. DOI:

Hu, J., Wang, Y., Fang, Y., Zeng, L., Xu, J., Yu, H., Shi, Z., Pan, J., Zhang, D., and Kang, S. J. M. p. (2015). A rare allele of GS2 enhances grain size and grain yield in rice. 8, 1455-1465. DOI:

Hu, Z., Lu, S.-J., Wang, M.-J., He, H., Sun, L., Wang, H., Liu, X.-H., Jiang, L., Sun, J.-L., and Xin, X. J. M. P. (2018). A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. 11, 736-749. DOI:

Huang, D., Wang, S., Zhang, B., Shang-Guan, K., Shi, Y., Zhang, D., Liu, X., Wu, K., Xu, Z., and Fu, X. J. T. P. C. (2015). A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. 27, 1681-1696. DOI:

Ishimaru, K., Hirotsu, N., Madoka, Y., Murakami, N., Hara, N., Onodera, H., Kashiwagi, T., Ujiie, K., Shimizu, B.-i., and Onishi, A. J. N. g. (2013). Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. 45, 707-711. DOI:

Ito, V. C., and Lacerda, L. G. (2019). Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food chemistry 301, 125304. DOI:

James, D., Borphukan, B., Fartyal, D., Ram, B., Singh, J., Manna, M., Sheri, V., Panditi, V., Yadav, R., and Achary, V. M. M. (2018). Concurrent overexpression of OsGS1; 1 and OsGS2 genes in transgenic rice (Oryza sativa L.): impact on tolerance to abiotic stresses. Frontiers in Plant Science 9, 786. DOI:

Kaur, N., Sharma, I., Kirat, K., and Pati, P. K. (2016). Detection of reactive oxygen species in Oryza sativa L.(rice). Bio-protocol 6, e2061-e2061. DOI:

Kim, Y., Chung, Y. S., Lee, E., Tripathi, P., Heo, S., and Kim, K.-H. (2020). Root response to drought stress in rice (Oryza sativa L.). International journal of molecular sciences 21, 1513. DOI:

Lakshmanan, V., Shantharaj, D., Li, G., Seyfferth, A. L., Janine Sherrier, D., and Bais, H. P. (2015). A natural rice rhizospheric bacterium abates arsenic accumulation in rice (Oryza sativa L.). Planta 242, 1037-1050. DOI:

Li, H., Zhang, Y., Wu, C., Bi, J., Chen, Y., Changjin, J., Cui, M., Chen, Y., Hou, X., and Yuan, M. J. P. B. J. (2022). Fine‐tuning OsCPK18/OsCPK4 activity via genome editing of phosphorylation motif improves rice yield and immunity. DOI:

Li, Q., Lu, L., Liu, H., Bai, X., Zhou, X., Wu, B., Yuan, M., Yang, L., Xing, Y. J. T., and Genetics, A. (2020). A minor QTL, SG3, encoding an R2R3-MYB protein, negatively controls grain length in rice. 133, 2387-2399. DOI:

Li, Y., Fan, C., Xing, Y., Jiang, Y., Luo, L., Sun, L., Shao, D., Xu, C., Li, X., and Xiao, J. J. N. g. (2011). Natural variation in GS5 plays an important role in regulating grain size and yield in rice. 43, 1266-1269. DOI:

Liu, Q., Han, R., Wu, K., Zhang, J., Ye, Y., Wang, S., Chen, J., Pan, Y., Li, Q., and Xu, X. J. N. c. (2018). G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. 9, 1-12. DOI:

Liu, Q., Shen, G., Peng, K., Huang, Z., Tong, J., Kabir, M. H., Wang, J., Zhang, J., Qin, G., and Xiao, L. J. J. o. i. p. b. (2015). The alteration in the architecture of a T‐DNA insertion rice mutant osmtd1 is caused by up‐regulation of MicroRNA156f. 57, 819-829. DOI:

Liu, Q., Su, Y., Zhu, Y., Peng, K., Hong, B., Wang, R., Gaballah, M., and Xiao, L. J. B. P. O. (2019). Manipulating osa-MIR156f expression by D18 promoter to regulate plant architecture and yield traits both in seasonal and ratooning rice. 21, 1-14. DOI:

Liu, W., Liu, C., Hu, X., Yang, J., and Zheng, L. (2016). Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics. Food chemistry 210, 415-421. DOI:

Ma, X., and Liu, Y. G. J. C. p. i. m. b. (2016). CRISPR/Cas9‐based multiplex genome editing in monocot and dicot plants. 115, 31.6. 1-31.6. 21. DOI:

Munir, S., Qureshi, M. K., Shahzad, A. N., Nawaz, I., Anjam, S., Rasul, S., and Zulfiqar, M. A. J. P. J. A. R. (2020). Genetic dissection of interspecific and intraspecific hybrids of cotton for morpho-yield and fiber traits using multivariate analysis. 33, 9-16. DOI:

Mushtaq, S., Shafiq, M., Tariq, M. R., Sami, A., Nawaz-ul-Rehman, M. S., Bhatti, M. H. T., Haider, M. S., Sadiq, S., Abbas, M. T., and Hussain, M. (2023). Interaction between bacterial endophytes and host plants. Frontiers in Plant Science 13, 1092105. DOI:

Muthayya, S., Sugimoto, J. D., Montgomery, S., and Maberly, G. F. J. A. o. t. n. y. A. o. S. (2014). An overview of global rice production, supply, trade, and consumption. 1324, 7-14. DOI:

Němec, M., and Zachariáš, J. J. M. D. (2018). The Krásná Hora, Milešov, and Příčovy Sb-Au ore deposits, Bohemian Massif: mineralogy, fluid inclusions, and stable isotope constraints on the deposit formation. 53, 225-244. DOI:

Park, M., Tyagi, K., Baek, S., Kim, Y., Shafiq, R., and Yun, S. J. P. J. o. B. (2010). Agronomic characteristics of transgenic rice with enhanced phosphate uptake ability by over-expressed tobacco high affinity phosphate transporter. 42, 3265-3273.

Qi, P., Lin, Y.-S., Song, X.-J., Shen, J.-B., Huang, W., Shan, J.-X., Zhu, M.-Z., Jiang, L., Gao, J.-P., and Lin, H.-X. J. C. r. (2012). The novel quantitative trait locus GL3. 1 controls rice grain size and yield by regulating Cyclin-T1; 3. 22, 1666-1680. DOI:

Qiao, J., Jiang, H., Lin, Y., Shang, L., Wang, M., Li, D., Fu, X., Geisler, M., Qi, Y., and Gao, Z. J. M. P. (2021). A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. 14, 1683-1698. DOI:

Ruan, B., Shang, L., Zhang, B., Hu, J., Wang, Y., Lin, H., Zhang, A., Liu, C., Peng, Y., and Zhu, L. J. N. P. (2020). Natural variation in the promoter of TGW2 determines grain width and weight in rice. 227, 629-640. DOI:

RYU, C. H., Lee, S., CHO, L. H., Kim, S. L., LEE, Y. S., Choi, S. C., Jeong, H. J., Yi, J., Park, S. J., HAN, C. D. J. P., cell, and environment (2009). OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)‐dependent flowering in rice. 32, 1412-1427. DOI:

Sakamoto, T., Morinaka, Y., Ishiyama, K., Kobayashi, M., Itoh, H., Kayano, T., Iwahori, S., Matsuoka, M., and Tanaka, H. J. N. b. (2003). Genetic manipulation of gibberellin metabolism in transgenic rice. 21, 909-913. DOI:

Sami, A., Haider, M. Z., and Shafiq, M. (2024). Microbial nanoenzymes: Features and applications. In "Fungal Secondary Metabolites", pp. 353-367. Elsevier. DOI:

Sami, A., Haider, M. Z., Shafiq, M., Sadiq, S., and Ahmad, F. (2023). Genome-Wide Identification and In-silico Expression Analysis of CCO Gene Family in Sunflower (Helianthus annnus). DOI:

Shrestha, J., Kandel, M., Subedi, S., and Shah, K. K. (2020). Role of nutrients in rice (Oryza sativa L.): A review. Agrica 9, 53-62. DOI:

Si, L., Chen, J., Huang, X., Gong, H., Luo, J., Hou, Q., Zhou, T., Lu, T., Zhu, J., and Shangguan, Y. J. N. g. (2016). OsSPL13 controls grain size in cultivated rice. 48, 447-456. DOI:

Song, X.-J., Huang, W., Shi, M., Zhu, M.-Z., and Lin, H.-X. J. N. g. (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. 39, 623-630. DOI:

Song, X. J., Kuroha, T., Ayano, M., Furuta, T., Nagai, K., Komeda, N., Segami, S., Miura, K., Ogawa, D., and Kamura, T. J. P. o. t. N. A. o. S. (2015). Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. 112, 76-81. DOI:

Sun, H., Qian, Q., Wu, K., Luo, J., Wang, S., Zhang, C., Ma, Y., Liu, Q., Huang, X., and Yuan, Q. J. N. g. (2014). Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. 46, 652-656. DOI:

Takai, T., Adachi, S., Taguchi-Shiobara, F., Sanoh-Arai, Y., Iwasawa, N., Yoshinaga, S., Hirose, S., Taniguchi, Y., Yamanouchi, U., and Wu, J. J. S. r. (2013). A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. 3, 1-11. DOI:

Todaka, D., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2015). Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Frontiers in plant science 6, 84. DOI:

Verma, D. K., and Srivastav, P. P. (2020). Bioactive compounds of rice (Oryza sativa L.): Review on paradigm and its potential benefit in human health. Trends in Food Science & Technology 97, 355-365. DOI:

Wang, A., Hou, Q., Si, L., Huang, X., Luo, J., Lu, D., Zhu, J., Shangguan, Y., Miao, J., and Xie, Y. J. P. P. (2019). The PLATZ transcription factor GL6 affects grain length and number in rice. 180, 2077-2090. DOI:

Wang, L., Sun, S., Jin, J., Fu, D., Yang, X., Weng, X., Xu, C., Li, X., Xiao, J., and Zhang, Q. J. P. o. t. N. A. o. S. (2015a). Coordinated regulation of vegetative and reproductive branching in rice. 112, 15504-15509. DOI:

Wang, M., Lu, X., Xu, G., Yin, X., Cui, Y., Huang, L., Rocha, P. S., and Xia, X. J. S. R. (2016). OsSGL, a novel pleiotropic stress-related gene enhances grain length and yield in rice. 6, 1-12. DOI:

Wang, S., Li, S., Liu, Q., Wu, K., Zhang, J., Wang, S., Wang, Y., Chen, X., Zhang, Y., and Gao, C. J. N. g. (2015b). The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. 47, 949-954. DOI:

Wang, S., Wu, K., Yuan, Q., Liu, X., Liu, Z., Lin, X., Zeng, R., Zhu, H., Dong, G., and Qian, Q. J. N. g. (2012). Control of grain size, shape and quality by OsSPL16 in rice. 44, 950-954. DOI:

Wang, Y., Xiong, G., Hu, J., Jiang, L., Yu, H., Xu, J., Fang, Y., Zeng, L., Xu, E., and Xu, J. J. N. g. (2015c). Copy number variation at the GL7 locus contributes to grain size diversity in rice. 47, 944-948. DOI:

Wang, Y., Zhai, L., Chen, K., Shen, C., Liang, Y., Wang, C., Zhao, X., Wang, S., and Xu, J. J. R. (2020). Natural sequence variations and combinations of GNP1 and NAL1 determine the grain number per panicle in rice. 13, 1-15. DOI:

Wang, Z., Wei, K., Xiong, M., Wang, J. D., Zhang, C. Q., Fan, X. L., Huang, L. C., Zhao, D. S., Liu, Q. Q., and Li, Q. F. J. P. b. j. (2021). Glucan, Water‐Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice. 19, 2606-2618. DOI:

Wu, Y., Fu, Y., Zhao, S., Gu, P., Zhu, Z., Sun, C., and Tan, L. J. P. b. j. (2016). Clustered primary branch 1, a new allele of DWARF 11, controls panicle architecture and seed size in rice. 14, 377-386. DOI:

Xie, K., Wu, C., and Xiong, L. J. P. p. (2006). Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. 142, 280-293. DOI:

Xu, J.-L., Wang, Y., Zhang, F., Wu, Y., Zheng, T.-Q., Wang, Y.-H., Zhao, X.-Q., Cui, Y.-R., Chen, K., and Zhang, Q. J. P. o. (2015). SS1 (NAL1)-and SS2-mediated genetic networks underlying source-sink and yield traits in rice (Oryza sativa L.). 10, e0132060. DOI:

Yamori, W., Kondo, E., Sugiura, D., Terashima, I., Suzuki, Y., and Makino, A. (2016). Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6/f complex. Plant, Cell & Environment 39, 80-87. DOI:

Yano, K., Yamamoto, E., Aya, K., Takeuchi, H., Lo, P.-c., Hu, L., Yamasaki, M., Yoshida, S., Kitano, H., and Hirano, K. J. N. g. (2016). Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. 48, 927-934. DOI:

Yi, X., Zhang, Z., Zeng, S., Tian, C., Peng, J., Li, M., Lu, Y., Meng, Q., Gu, M., Yan, C. J. J. o. G., and Genomics (2011). Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.). 38, 217-223. DOI:

Yu, J., Miao, J., Zhang, Z., Xiong, H., Zhu, X., Sun, X., Pan, Y., Liang, Y., Zhang, Q., and Abdul Rehman, R. M. J. P. B. J. (2018). Alternative splicing of Os LG 3b controls grain length and yield in japonica rice. 16, 1667-1678. DOI:

Yu, J., Xiong, H., Zhu, X., Zhang, H., Li, H., Miao, J., Wang, W., Tang, Z., Zhang, Z., and Yao, G. J. B. b. (2017). OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. 15, 1-18. DOI:

Zeng, Y., Wen, J., Zhao, W., Wang, Q., and Huang, W. J. F. i. p. s. (2020). Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system. 10, 1663. DOI:

Zhang, G.-H., Li, S.-Y., Wang, L., Ye, W.-J., Zeng, D.-L., Rao, Y.-C., Peng, Y.-L., Hu, J., Yang, Y.-L., and Xu, J. J. M. p. (2014). LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11. 7, 1350-1364. DOI:

Zhang, X., Wang, J., Huang, J., Lan, H., Wang, C., Yin, C., Wu, Y., Tang, H., Qian, Q., and Li, J. J. P. o. t. N. A. o. S. (2012). Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. 109, 21534-21539. DOI:

Zhang, Y.-C., Yu, Y., Wang, C.-Y., Li, Z.-Y., Liu, Q., Xu, J., Liao, J.-Y., Wang, X.-J., Qu, L.-H., and Chen, F. J. N. b. (2013). Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. 31, 848. DOI:

Zhang, Y., Yu, C., Lin, J., Liu, J., Liu, B., Wang, J., Huang, A., Li, H., and Zhao, T. J. P. o. (2017). OsMPH1 regulates plant height and improves grain yield in rice. 12, e0180825. DOI:

Zhao, M., Zhao, M., Gu, S., Sun, J., Ma, Z., Wang, L., Zheng, W., and Xu, Z. J. P. o. (2019). DEP1 is involved in regulating the carbon–nitrogen metabolic balance to affect grain yield and quality in rice (Oriza sativa L.). 14, e0213504. DOI:

Zhu, H., Li, C., and Gao, C. J. N. R. M. C. B. (2020). Applications of CRISPR–Cas in agriculture and plant biotechnology. 21, 661-677. DOI:

Zuo, Z.-W., Zhang, Z.-H., Huang, D.-R., Fan, Y.-Y., Yu, S.-B., Zhuang, J.-Y., and Zhu, Y.-J. J. I. j. o. m. s. (2021). Control of thousand-grain weight by OsMADS56 in rice. 23, 125. DOI:




How to Cite

JAVED, M., SAMI, A., HAIDER, M., ABBAS, A., ALI, M., NAEEM, S., AMJAD, M., AHMAD, A., & BOSTANI, R. (2024). THE CONTRIBUTION OF TRANSGENIC RICE TO ENHANCE GRAIN YIELD. Bulletin of Biological and Allied Sciences Research, 2024(1), 65.

Most read articles by the same author(s)

1 2 > >>