EXPLORING THE POTENTIAL OF IN VITRO TISSUE CULTURE IN BREEDING PROGRAMS OF LEGUME AND PULSE CROPS: UTILIZATION AND PRESENT CONDITION

Authors

  • A ABBAS Department of Plant Breeding and Genetics, University of the Punjab Lahore, Pakistan
  • AU REHMAN Department of Plant Breeding and Genetics, University of the Punjab Lahore, Pakistan
  • MM JAVED Department of Plant Breeding and Genetics, University of the Punjab Lahore, Pakistan

DOI:

https://doi.org/10.54112/bbasr.v2021i1.36

Keywords:

pulses, oil extraction, fertilizers, biotechnology, bacteria, transformation

Abstract

Legumes are an important family of flowering plants, comprising more than 13,000 species and 600 genera. The term "pulses" refers to dried seed crops cultivated for food, rather than oil extraction. Lentils, chickpeas, cowpeas, mung beans, black grams, and pigeon peas are examples of such pulses, as they are highly nutritious and widely consumed by humans. Also, they can fix nitrogen in the soil with the help of bacteria that live in harmony with them. This makes crop cycles less dependent on chemical fertilizers. Before new genotypes were used, the traditional ways of raising pulses took a long time and were hard to do. So, alternatives based on biotechnology can be helpful in this area. Researchers are investigating the efficacy of tissue culture, regeneration techniques, gene transfer, and transformation methods in pulse crops. The aim is to determine how these approaches can be utilized to improve the production and quality of pulse crops. Also discussed are anther, microspore, embryo, and ovary growth and their possible uses in pulses. The study concludes that in vitro tissue culture is a useful tool for breeding programs of leguminous pulses. It can help make better legume crop varieties, leading to higher yields and better quality.

References

Weeden, N. F. (2007). Genetic changes accompanying the domestication of Pisum sativum: is there a common genetic basis to the ‘domestication syndrome’for legumes?. Annals of botany, 100(5), 1017-1025. DOI: https://doi.org/10.1093/aob/mcm122

Ahmed, Z., Akhter, F., Haque, M. S., Banu, H., Rahman, M. M., & Faruquzzaman, A. K. M. (2001). Novel micropropagation system. J Biol Sci, 11, 1106-1111. DOI: https://doi.org/10.3923/jbs.2001.1106.1111

Akibode, S., & Maredia, M. K. (2012). Global and regional trends in production, trade and consumption of food legume crops. Department of Agricultural, Food and Resource Economics Michigan State University, USA

Annicchiarico, P., Barrett, B., Brummer, E. C., Julier, B., & Marshall, A. H. (2015). Achievements and challenges in improving temperate perennial forage legumes. Critical Reviews in Plant Sciences, 34(1-3), 327-380. DOI: https://doi.org/10.1080/07352689.2014.898462

Atif, R. M., Patat-Ochatt, E. M., Svabova, L., Ondrej, V., Klenoticova, H., Jacas, L., ... & Ochatt, S. J. (2012). Gene transfer in legumes. In Progress in Botany: Vol. 74 (pp. 37-100). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-642-30967-0_2

Bermejo, C. (2015). Herramientas biotecnológicas en la mejora de lenteja (Lens culinaris Medik) para su producción sustentable (Doctoral dissertation, Doctoral Dissertation, University of Rosario).

Bobkov, S. (2014). Obtaining calli and regenerated plants in anther cultures of pea. Czech journal of genetics and plant breeding, 50(2), 123-129. DOI: https://doi.org/10.17221/137/2013-CJGPB

Burr, B., Burr, F. A., Thompson, K. H., Albertson, M. C., & Stuber, C. W. (1988). Gene mapping with recombinant inbreds in maize. Genetics, 118(3), 519-526. DOI: https://doi.org/10.1093/genetics/118.3.519

Cabrera-Ponce, J. L., López, L., León-Ramírez, C. G., Jofre-Garfias, A. E., & Verver-y-Vargas, A. (2014). Stress induced acquisition of somatic embryogenesis in common bean Phaseolus vulgaris L. Protoplasma, 252, 559-570. DOI: https://doi.org/10.1007/s00709-014-0702-4

Cannon, S. B., May, G. D., & Jackson, S. A. (2009). Three sequenced legume genomes and many crop species: rich opportunities for translational genomics. Plant physiology, 151(3), 970-977. DOI: https://doi.org/10.1104/pp.109.144659

Comai, L. (2014). Genome elimination: translating basic research into a future tool for plant breeding. PLoS biology, 12(6), e1001876. DOI: https://doi.org/10.1371/journal.pbio.1001876

Croser, J. S., Lulsdorf, M. M., Grewal, R. K., Usher, K. M., & Siddique, K. H. (2011). Isolated microspore culture of chickpea (Cicer arietinum L.): induction of androgenesis and cytological analysis of early haploid divisions. In Vitro Cellular & Developmental Biology-Plant, 47, 357-368. DOI: https://doi.org/10.1007/s11627-011-9346-7

Cruz-Cruz, C. A., González-Arnao, M. T., & Engelmann, F. (2013). Biotechnology and conservation of plant biodiversity. Resources, 2(2), 73-95. DOI: https://doi.org/10.3390/resources2020073

Cruz-Izquierdo, S., Ávila, C. M., Satovic, Z., Palomino, C., Gutiérrez, N., Ellwood, S. R., ... & Torres, A. M. (2012). Comparative genomics to bridge Vicia faba with model and closely-related legume species: stability of QTLs for flowering and yield-related traits. Theoretical and Applied Genetics, 125, 1767-1782. DOI: https://doi.org/10.1007/s00122-012-1952-1

Das, S. K., Shethi, K. J., Hoque, M. I., & Sarker, R. H. (2012). Agrobacterium-mediated genetic transformation in lentil (Lens culinaris Medik.) followed by in vitro flowering and seed formation. Plant Tissue Culture and Biotechnology, 22(1), 13-26. DOI: https://doi.org/10.3329/ptcb.v22i1.11243

Davey, M. R., & Anthony, P. (2010). Plant cell culture: essential methods. John Wiley & Sons. DOI: https://doi.org/10.1002/9780470686522

de la Vega, M. P., Torres, A. M., Cubero, J. I., & Kole, C. (Eds.). (2011). Genetics, genomics and breeding of cool season grain legumes. CRC Press. DOI: https://doi.org/10.1201/b11407

Deo, P. C., Tyagi, A. P., Taylor, M., Harding, R., & Becker, D. (2010). Factors affecting somatic embryogenesis and transformation in modern plant breeding. The South Pacific Journal of Natural and Applied Sciences, 28(1), 27-40. DOI: https://doi.org/10.1071/SP10002

Durieu, P., & Ochatt, S. J. (2000). Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts. Journal of Experimental Botany, 51(348), 1237-1242. DOI: https://doi.org/10.1093/jxb/51.348.1237

Elmaghrabi, A. M., Ochatt, S., Rogers, H. J., & Francis, D. (2013). Enhanced tolerance to salinity following cellular acclimation to increasing NaCl levels in Medicago truncatula. Plant Cell, Tissue and Organ Culture (PCTOC), 114, 61-70. DOI: https://doi.org/10.1007/s11240-013-0306-2

Espósito, M. A., Almirón, P., Gatti, I., Cravero, V. P., Anido, F. S., & Cointry, E. L. (2012). A rapid method to increase the number of F₁ plants in pea (Pisum sativum) breeding programs. Genetics and Molecular Research: GMR, 11(3), 2729-2732. DOI: https://doi.org/10.4238/2012.June.18.1

Gatti, I., Guindón, F., Bermejo, C., Espósito, A., & Cointry, E. (2016). In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell, Tissue and Organ Culture (PCTOC), 127, 543-559. DOI: https://doi.org/10.1007/s11240-016-1082-6

Gaur, P. M., Jukanti, A. K., & Varshney, R. K. (2012). Impact of genomic technologies on chickpea breeding strategies. Agronomy, 2(3), 199-221. DOI: https://doi.org/10.3390/agronomy2030199

Germana, M. A. (2006). Doubled haploid production in fruit crops. Plant Cell, Tissue and Organ Culture, 86, 131-146. DOI: https://doi.org/10.1007/s11240-006-9088-0

Germana, M. A. (2011). Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant cell reports, 30, 839-857. DOI: https://doi.org/10.1007/s00299-011-1061-7

Harlan, J. R., & de Wet, J. M. J. (1972). A simplified classification of cultivated plants. Taxon, 20, 509-517. DOI: https://doi.org/10.2307/1218252

Hosp, J., de Maraschin, S. F., Touraev, A., & Boutilier, K. (2007). Functional genomics of microspore embryogenesis. Euphytica, 158, 275-285. DOI: https://doi.org/10.1007/s10681-006-9238-9

Jaiwal, P. K., & Singh, R. P. (Eds.). (2003). Improvement strategies of leguminosae biotechnology. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-94-017-0109-9

Khatun, M. M., Ali, M. H., & Desamero, N. V. (2003). Effect of genotype and culture media on callus formation and plant regeneration from mature seed scutella culture in rice. Plant Tissue Cult, 13(2), 99-107.

Klinger, D. H. (2014). Navigating Emerging Challenges in Marine Aquaculture: Toxins, Temperature, and New Species. Stanford University.

Kozak, K., Galek, R., Waheed, M. T., & Sawicka-Sienkiewicz, E. (2012). Anther culture of Lupinus angustifolius: callus formation and the development of multicellular and embryo-like structures. Plant Growth Regulation, 66, 145-153. DOI: https://doi.org/10.1007/s10725-011-9638-2

Kumar, S., Gupta, S., & Singh, B. B. (2004). How wide is the genetic base of pulse crops?. P: 211-221. In Pulses in new perspective. Proceedings of the natioanl symposium on crop diversification and natural resources management. ISPRD and IIPR, Kanpur, India.

Kumar, S., Imtiaz, M., Gupta, S., & Pratap, A. (2011). Distant hybridization and alien gene introgression. Biology and breeding of food legumes, 81-110.

Murovec, J., & Bohanec, B. (2011). Haploids and doubled haploids in plant breeding. Plant Breeding, Dr. Ibrokhim Abdurakhmonov (Ed.).–2012.–Р, 87-106. DOI: https://doi.org/10.5772/29982

Nafie, E. M., Taha, H. S., & Mansur, R. M. (2013). Impact of 24-epibrassinolide on callogenesis and regeneration via somatic embryogenesis in Phaseolus vulgaris L. cv Brunca. World Appl Sci J, 24(2), 188-200.

Negawo, A. T. (2015). Transgenic insect resistance in grain legumes. geboren am 31.12.1981 in Showa, Ethiopia

Ochatt, S. J. (2015). Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes. Agronomy for Sustainable Development, 35(2), 535-552. DOI: https://doi.org/10.1007/s13593-014-0276-8

Ochatt, S. J., & Revilla, M. A. (2016). From stress to embryos: some of the problems for induction and maturation of somatic embryos. In vitro embryogenesis in higher plants, 523-536. DOI: https://doi.org/10.1007/978-1-4939-3061-6_31

Ochatt, S. J., & Sangwan, R. S. (2010). In vitro flowering and seed set: acceleration of generation cycles. Plant cell culture: essential methods’.(Eds MR Davey, P Anthony) pp, 97-110. DOI: https://doi.org/10.1002/9780470686522.ch6

Ochatt, S. J., Abirached-Darmency, M., Marget, P., & Aubert, G. (2007). The Lathyrus paradox:“poor men’s diet” or a remarkable genetic resource for protein legume breeding. Breeding of neglected and under-utilised crops, spices and herbs, 41-60. DOI: https://doi.org/10.1201/9781482280548-9

Ochatt, S. J., Delaitre, C., Lionneton, E., Huchette, O., Patat-Ochatt, E. M., & Kahane, R. (2005). One team, PCMV, and one approach, in vitro biotechnology, for one aim, the breeding of quality plants with a wide array of species. Crops growth, quality and biotechnology. Helsinki, Finland: WFL Publ. Sci. & Technol, 1038-1067.

Panchangam, S. S., Mallikarjuna, N., Gaur, P. M., & Suravajhala, P. (2014). Androgenesis in chickpea: Anther culture and expressed sequence tags derived annotation. Indian Journal of Experimental Biology, 52(2), 181-188.

Pratap, A., Choudhary, A. K., & Kumar, J. (2010). In vitro techniques towards genetic enhancement of food legumes–a review. Journal of Food Legumes, 23(3and4), 169-185.

Ravi, M., & Chan, S. W. (2010). Haploid plants produced by centromere-mediated genome elimination. Nature, 464(7288), 615-618. DOI: https://doi.org/10.1038/nature08842

Ribalta, F. M., Croser, J. S., & Ochatt, S. J. (2012). Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells. Journal of plant physiology, 169(1), 104-110. DOI: https://doi.org/10.1016/j.jplph.2011.08.013

Sarker, R. H., Das, S. K., & Hoque, M. I. (2012). In vitro flowering and seed formation in lentil (Lens culinaris Medik.). In Vitro Cellular & Developmental Biology-Plant, 48, 446-452. DOI: https://doi.org/10.1007/s11627-012-9444-1

Schlichting, C. D., & Wund, M. A. (2014). Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution, 68(3), 656-672. DOI: https://doi.org/10.1111/evo.12348

Sevimay, C. S., Khawar, K. M., & Yuzbasioglu, E. (2005). Adventitious shoot regeneration from different explants of wild lentil (Lens culinaris subsp. orientalis). Biotechnology & Biotechnological Equipment, 19(2), 46-49. DOI: https://doi.org/10.1080/13102818.2005.10817189

Soniya, E. V., Banerjee, N. S., & Das, M. R. (2001). Genetic analysis of somaclonal variation among callus-derived plants of tomato. Current science, 1213-1215.

Szarejko, I., & Forster, B. P. (2007). Doubled haploidy and induced mutation. Euphytica, 158, 359-370. DOI: https://doi.org/10.1007/s10681-006-9241-1

Tapingkae, T., Zulkarnain, Z., Kawaguchi, M., Ikeda, T., & Taji, A. (2012). Somatic (asexual) procedures (haploids, protoplasts, cell selection) and their applications. Plant biotechnology and agriculture, 141-162. DOI: https://doi.org/10.1016/B978-0-12-381466-1.00010-9

TEK, A. L., Stupar, R. M., & Nagaki, K. (2015). Modification of centromere structure: a promising approach for haploid line production in plant breeding. Turkish Journal of Agriculture and Forestry, 39(4), 557-562. DOI: https://doi.org/10.3906/tar-1405-137

Thiagarajan, T., Recinos, H., & Tillett, A. (2013). Effect of salinity on callus formation and organogenesis of red kidney beans (Phaseolus vulgaris L.). European Scientific Journal, 9(33).

Vickers, N. J. (2017). Animal communication: when i’m calling you, will you answer too?. Current biology, 27(14), R713-R715.

Vickers, N. J. (2017). Animal communication: when i’m calling you, will you answer too?. Current biology, 27(14), R713-R715. DOI: https://doi.org/10.1016/j.cub.2017.05.064

Ziemienowicz, A. (2014). Agrobacterium-mediated plant transformation: Factors, applications and recent advances. Biocatalysis and Agricultural Biotechnology, 3(4), 95-102. DOI: https://doi.org/10.1016/j.bcab.2013.10.004

Downloads

Published

2021-10-13

How to Cite

ABBAS, A., REHMAN, A., & JAVED, M. (2021). EXPLORING THE POTENTIAL OF IN VITRO TISSUE CULTURE IN BREEDING PROGRAMS OF LEGUME AND PULSE CROPS: UTILIZATION AND PRESENT CONDITION. Bulletin of Biological and Allied Sciences Research, 2021(1), 36. https://doi.org/10.54112/bbasr.v2021i1.36

Most read articles by the same author(s)