EXPLORING THE LATEST DEVELOPMENTS IN TOMATO TISSUE CULTURE
DOI:
https://doi.org/10.54112/bbasr.v2021i1.35Keywords:
In vitro Techniques, Haploids, Somatic Hybrids, Tissue Culture, Tomato CultivarsAbstract
The tomato is an important vegetable crop that has grown widely over the past 100 years. The development of in vitro selection techniques could lead to new ways of making plants that can deal with stress. Techniques have been improved to make it possible to develop haploids and somatic hybrids. Also, work has been done to make it possible for tomato cultivars to grow back faster than wild varieties. It's important to consider how stable the genes are in tissue-cultured tomato plants. Many traditional and molecular breeding methods can be used to make cultivars that are resistant to both biotic and abiotic stressors. This essay looks at how tomato tissue culture has changed in several ways. It also talks about the problems that need to be fixed before plant tissue culture techniques can be fully used to make tomatoes grow more quickly and improve their genes. The ways to grow tomato tissue are changing quickly. There is still much work to be done before tissue culture can be used to make hybrid cultivars that can be sold.
Downloads
References
Ancora, G. (1981). Plant regeneration from in vitro cultures of stem internodes in self-incompatible triploid Lycopersicon peruvianum Mill. and cytogenetic analysis of regenerated plants. Plant Science Letters (Netherlands). DOI: https://doi.org/10.1016/0304-4211(81)90231-5
Araki, M., & Ishii, T. (2015). Towards social acceptance of plant breeding by genome editing. Trends in plant science, 20(3), 145-149. DOI: https://doi.org/10.1016/j.tplants.2015.01.010
Behki, R. M., & Lesley, S. M. (1980). Shoot regeneration from leaf callus of Lycopersicon esculentum. Zeitschrift für Pflanzenphysiologie, 98(1), 83-87. DOI: https://doi.org/10.1016/S0044-328X(80)80222-4
Bhatia, P., Ashwath, N., Senaratna, T., & Midmore, D. (2004). Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell, Tissue and Organ Culture, 78, 1-21. DOI: https://doi.org/10.1023/B:TICU.0000020430.08558.6e
Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant physiology, 166(3), 1292-1297. DOI: https://doi.org/10.1104/pp.114.247577
Cassells, A. C. (1979). The effect of 2, 3.5 triiodobenzoic acid on caulogenesis in callus cultures of Tomato and Pelargonium. Physiologia plantarum, 46(2), 159-164. DOI: https://doi.org/10.1111/j.1399-3054.1979.tb06550.x
Chlyah, A., & Taarji, H. (1984). Androgenesis in tomato. Plant tissue and cell culture application to crop improvement. Czechoslovak Ac, 241-242.
Devereux, S., Béné, C., & Hoddinott, J. (2020). Conceptualising COVID-19’s impacts on household food security. Food Security, 12(4), 769-772. DOI: https://doi.org/10.1007/s12571-020-01085-0
Dwivedi, K. S. H. I. T. I. J., Srivastava, P., Verma, H. N., & Chaturvedi, H. C. (1990). Direct regeneration of shoots from leaf segments of tomato (Lycopersicon esculentum) cultured in vitro and production of plants. Indian Journal of Experimental Biology, 28(1), 32-35.
Evans, D. A. (1989). Somaclonal variation-genetic basis and breeding applications. Trends in genetics, 5, 46-50. DOI: https://doi.org/10.1016/0168-9525(89)90021-8
FAO Statistical Database 2003. FAOSTAT Agriculture data, URL http://apps.fao.org/page/collections?subset=agriculture, date of access 13 June 2003.
Fari, M., Szasz, A., Mityko, J., Nagy, I., Csanyi, M., & Andrasfalvy, A. (1992). Induced organogenesis via the seedling decapitation method (SDM) in three solanaceous vegetable species. Capsicum Newsletter, 243-248.
Gao, Y., Wei, W., Fan, Z., Zhao, X., Zhang, Y., Jing, Y., ... & Fu, D. Q. (2020). Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening. Journal of Experimental Botany, 71(12), 3560-3574. DOI: https://doi.org/10.1093/jxb/eraa131
Geetha, N., Venkatachalam, P., Sairam Reddy, P., & Rajaseger, G. (1998). In vitro plant regeneration from leaf callus cultures of tomato (Lycopersicon esculentum Mill.). Advances in Plant Sciences, 11, 253-258.
Hobson, G. E., Davies, J. N., & Hulme, A. C. (1971). The biochemistry of fruits and their products. Edited by AC Hulme. Academic Dress, 437-482.
Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M., Shima, Y., Nakamura, N., ... & Toki, S. (2017). Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nature plants, 3(11), 866-874. DOI: https://doi.org/10.1038/s41477-017-0041-5
Li, X., Wang, Y., Chen, S., Tian, H., Fu, D., Zhu, B., ... & Zhu, H. (2018). Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Frontiers in plant science, 9, 559. DOI: https://doi.org/10.3389/fpls.2018.00559
Novak, F. J., & Mašková, I. (1979). Apical shoot tip culture of tomato. Scientia Horticulturae, 10(4), 337-344. DOI: https://doi.org/10.1016/0304-4238(79)90093-1
Padmanabhan, V., Paddock, E. F., & Sharp, W. R. (1974). Plantlet formation from Lycopersicon esculentum leaf callus. Canadian Journal of Botany, 52(6), 1429-1432. DOI: https://doi.org/10.1139/b74-185
Pradhan, P., Fischer, G., van Velthuizen, H., Reusser, D. E., & Kropp, J. P. (2015). Closing yield gaps: how sustainable can we be?. PloS one, 10(6), e0129487. DOI: https://doi.org/10.1371/journal.pone.0129487
Rhodes, D. (2002). Tomatoes-Notes (Purdue University).
Sink, K. C., Handley, L. W., Niedz, R. P., & Moore, P. P. (2019). Protoplast culture and use of regeneration attributes to select somatic hybrid tomato plants. In Genetic Manipulation in Plant Breeding (pp. 405-414). De Gruyter.
Stavarek, S. J., & Rains, D. W. (1984). The development of tolerance to mineral stress. HortScience, 19(3), 377-382. DOI: https://doi.org/10.21273/HORTSCI.19.3.377
Toyoda, H., Shimizu, K., Chatani, K., Kita, N., Matsuda, Y., & Ouchi, S. (1989). Selection of bacterial wilt-resistant tomato through tissue culture. Plant Cell Reports, 8, 317-320. DOI: https://doi.org/10.1007/BF00716663
Toyoda, H., TANAKA, N., & HIRAI, T. (1984). Effects of the culture filtrate of Fusarium oxysporum f. sp. lycopersici on tomato callus growth and the selection of resistant callus cells to the filtrate. Japanese Journal of Phytopathology, 50(1), 53-62. DOI: https://doi.org/10.3186/jjphytopath.50.53
Wang, R., Tavano, E. C. D. R., Lammers, M., Martinelli, A. P., Angenent, G. C., & de Maagd, R. A. (2019). Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Scientific reports, 9(1), 1-10. DOI: https://doi.org/10.1038/s41598-018-38170-6
Wijbrandi, J., Vos, J. G. M., & Koornneef, M. (1988). Transfer of regeneration capacity from Lycopersicon peruvianum to L. esculentum by protoplast fusion. In Progress in Plant Protoplast Research: Proceedings of the 7th International Protoplast Symposium, Wageningen, the Netherlands, December 6–11, 1987 (pp. 227-230). Springer Netherlands. DOI: https://doi.org/10.1007/978-94-009-2788-9_79
Yu, H., Lin, T., Meng, X., Du, H., Zhang, J., Liu, G., ... & Li, J. (2021). A route to de novo domestication of wild allotetraploid rice. Cell, 184(5), 1156-1170. DOI: https://doi.org/10.1016/j.cell.2021.01.013
Zagorska, N. A., Abadjieva, M. D., Georgiev, H. A., Abadzhieva, M. D., & Georgiev, K. A. (1982). Inducing regeneration in anther cultures of tomatoes (Lycopersicon esculentum Mill.). Comptes Rendus de Academic Bulgare des Sciences, 35, 97-100.
Zagorska, N. A., Shtereva, A., Dimitrov, B. D., & Kruleva, M. M. (1998). Induced androgenesis in tomato (Lycopersicon esculentum Mill.) I. Influence of genotype on androgenetic ability: I. Influence of genotype on androgenetic ability. Plant cell reports, 17, 968-973. DOI: https://doi.org/10.1007/s002990050519
Zapata, F. J., Sink, K. C., & Cocking, E. C. (1981). Callus formation from leaf mesophyll photoplasts of three Lycopersicon species: L. esculentum, CV Walter, L. pimpinillifolium and L. hirsutum, F. glabratum. Plant Science Letters, 23(1), 41-46. DOI: https://doi.org/10.1016/0304-4211(81)90023-7
Zhang, Y., Massel, K., Godwin, I. D., & Gao, C. (2018). Applications and potential of genome editing in crop improvement. Genome biology, 19, 1-11. DOI: https://doi.org/10.1186/s13059-018-1586-y
Zhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., ... & Huang, S. (2018). Rewiring of the fruit metabolome in tomato breeding. Cell, 172(1-2), 249-261. DOI: https://doi.org/10.1016/j.cell.2017.12.019
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 A ABBAS, AU REHMAN
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.