• A ABBAS Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • A RASHAD Department of Seed Science and Technology, University of Agriculture Faisalabad P.O BOX, 38000, Faisalabad, Pakistan
  • AU REHMAN Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
  • MS BUKHARI Agricultural Research Station Bahawalpur, P.O BOX, 63100, Bahawalpur, Pakistan




Salinity, Traditional, Molecular Biology, Screening of rice, Physiological, Molecular


The world's agricultural productivity has been on the decline due to salinity, which is a significant abiotic element. To find a solution to this problem, researchers have been concentrating their efforts on the enzymes and biochemical pathways involved in salt tolerance. The ultimate objective is to develop crops that are resistant to salt. Developments in molecular biology have facilitated the production of salt-tolerant cultivars by conventional breeding techniques. A significant amount of salt can inhibit the growth of rice (Oryza sativa L.), a major food crop in many nations. This is especially true during the early stages of plant development. Rice's physiological, molecular, and biochemical reactions to excessive salinity have been the subject of significant exploration and investigation. The possible applications and implications of salinity tolerance are also discussed in this article, as well as the approaches that can be used to locate plants that are tolerant of salt.


Abobatta, W. F. (2020). Plant responses and tolerance to extreme salinity: Learning from halophyte tolerance to extreme salinity. Salt and Drought Stress Tolerance in Plants: Signaling Networks and Adaptive Mechanisms, 177-210. https://doi.org/10.1007/978-3-030-40277-8_7 DOI: https://doi.org/10.1007/978-3-030-40277-8_7

Afzal, M., Hindawi, S. E. S., Alghamdi, S. S., Migdadi, H. H., Khan, M. A., Hasnain, M. U., . Sohaib, M. (2023). Potential breeding strategies for improving salt tolerance in crop plants. Journal of Plant Growth Regulation, 42(6), 3365-3387. DOI: https://doi.org/10.1007/s00344-022-10797-w DOI: https://doi.org/10.1007/s00344-022-10797-w

Ahmed, A. A. M. (2021). Examination of Fungal Contaminants of Wheat, Rice, Barely and Maize Grains. Sudan University of Science & Technology,

Ahmed, H. A. I., & Hou, P. (2023). Portulaca oleracea under Salt Stress. In Medicinal Plant Responses to Stressful Conditions (pp. 331-346): CRC Press. DOI: https://doi.org/10.1201/9781003242963-17

Ali, A., Petrov, V., Yun, D.-J., & Gechev, T. (2023). Revisiting plant salt tolerance: novel components of the SOS pathway. Trends in Plant Science. 28(9):1060-1069. https://doi.org/10.1016/j.tplants.2023.04.003 DOI: https://doi.org/10.1016/j.tplants.2023.04.003

Ali, F., Ahsan, M., Ali, Q., and Kanwal, N. (2017). Phenotypic stability of Zea mays grain yield and its attributing traits under drought stress. Frontiers in plant science 8, 1397. https://doi.org/10.3389/fpls.2017.01397 DOI: https://doi.org/10.3389/fpls.2017.01397

Ali, F., Kanwal, N., Ahsan, M., Ali, Q., Bibi, I., and Niazi, N. K. (2015). Multivariate analysis of grain yield and its attributing traits in different maize hybrids grown under heat and drought stress. Scientifica 2015. https://doi.org/10.1155/2015/563869 DOI: https://doi.org/10.1155/2015/563869

Ali, Q., Ahsan, M., Kanwal, N., Ali, F., Ali, A., Ahmed, W., Ishfaq, M., and Saleem, M. (2016). Screening for drought tolerance: comparison of maize hybrids under water deficit condition. Advancements in Life Sciences 3, 51-58.

Ali, Q., Ali, A., Ahsan, M., Nasir, I. A., Abbas, H. G., and Ashraf, M. A. (2014). Line× Tester analysis for morpho-physiological traits of Zea mays L seedlings. Advancements in Life sciences 1, 242-253.

Alkharabsheh, H. M., Seleiman, M. F., Hewedy, O. A., Battaglia, M. L., Jalal, R. S., Alhammad, B. A., . . . Al-Doss, A. (2021). Field crop responses and management strategies to mitigate soil salinity in modern agriculture: A review. Agronomy, 11(11), 2299. https://doi.org/10.3390/agronomy11112299 DOI: https://doi.org/10.3390/agronomy11112299

Anand, A., Kumar, V., & Kaushal, P. (2022). Biochar and its twin benefits: Crop residue management and climate change mitigation in India. Renewable and Sustainable Energy Reviews, 156, 111959. https://doi.org/10.1016/j.rser.2021.111959 DOI: https://doi.org/10.1016/j.rser.2021.111959

Anjum, N., Masood, A., Thangavel, P., & Khan, N. A. (2023). Making Plant Life Easier and Productive Under Salinity: Updates and Prospects: BoD–Books on Demand.

Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042 DOI: https://doi.org/10.1016/j.plaphy.2020.08.042

Asibi, A. E., Chai, Q., & Coulter, J. A. (2019). Rice blast: A disease with implications for global food security. Agronomy, 9(8), 451. https://doi.org/10.3390/agronomy9080451 DOI: https://doi.org/10.3390/agronomy9080451

Asif, S., Ali, Q., and Malik, A. (2020). Evaluation of salt and heavy metal stress for seedling traits in wheat. Biological and Clinical Sciences Research Journal 2020. https://doi.org/10.54112/bcsrj.v2020i1.5 DOI: https://doi.org/10.54112/bcsrj.v2020i1.5

Bhatt, T., Sharma, A., Puri, S., & Minhas, A. P. (2020). Salt tolerance mechanisms and approaches: Future scope of halotolerant genes and rice landraces. Rice Science, 27(5), 368-383. https://doi.org/10.1016/j.rsci.2020.03.002 DOI: https://doi.org/10.1016/j.rsci.2020.03.002

Cesarino, I., Dello Ioio, R., Kirschner, G. K., Ogden, M. S., Picard, K. L., Rast-Somssich, M. I., & Somssich, M. (2020). Plant science’s next top models. Annals of Botany, 126(1), 1-23. https://doi.org/10.1093/aob/mcaa063 DOI: https://doi.org/10.1093/aob/mcaa063

Challabathula, D., Analin, B., Mohanan, A., & Bakka, K. (2022). Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and-tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. Journal of Plant Physiology, 268, 153583. https://doi.org/10.1016/j.jplph.2021.153583 DOI: https://doi.org/10.1016/j.jplph.2021.153583

Chandel, S., Datta, A., & Yadav, R. (2022). Soil salinity indicators and salinity build-up on saline water irrigation in seed spices. Crop and Pasture Science, 73(6), 663-678. https://doi.org/10.1071/CP21585 DOI: https://doi.org/10.1071/CP21585

Chattopadhyay, K., Vijayan, J., Ray, A., Chakraborty, K., & Sarkar, R. (2020). Additive main effect and digenic epistatic quantitative trait loci for chlorophyll fluorescence traits influencing salt tolerance at seedling stage in rice. Photosynthetica, 58. DOI: https://doi.org/10.32615/ps.2020.008

Chaurasia, S., Singh, A. K., Songachan, L., Sharma, A. D., Bhardwaj, R., & Singh, K. (2020). Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.). Genomics, 112(6), 4608-4621. https://doi.org/10.1016/j.ygeno.2020.08.006 DOI: https://doi.org/10.1016/j.ygeno.2020.08.006

Chen, C., Travis, A. J., Hossain, M., Islam, M. R., Price, A. H., & Norton, G. J. (2021). Genome-wide association mapping of sodium and potassium concentration in rice grains and shoots under alternate wetting and drying and continuously flooded irrigation. Theoretical and Applied Genetics, 134, 2315-2334. https://doi.org/10.1007/s00122-021-03828-9 DOI: https://doi.org/10.1007/s00122-021-03828-9

De la Torre-González, A., Montesinos-Pereira, D., Blasco, B., & Ruiz, J. (2018). Influence of the proline metabolism and glycine betaine on tolerance to salt stress in tomato (Solanum lycopersicum L.) commercial genotypes. Journal of Plant Physiology, 231, 329-336. https://doi.org/10.1016/j.jplph.2018.10.013 DOI: https://doi.org/10.1016/j.jplph.2018.10.013

Elsawy, H. I., Mekawy, A. M. M., Elhity, M. A., Abdel-Dayem, S. M., Abdelaziz, M. N., Assaha, D. V., . . . Saneoka, H. (2018). Differential responses of two Egyptian barley (Hordeum vulgare L.) cultivars to salt stress. Plant Physiology and Biochemistry, 127, 425-435. https://doi.org/10.1016/j.plaphy.2018.04.012 DOI: https://doi.org/10.1016/j.plaphy.2018.04.012

Fahad, S., Adnan, M., Noor, M., Arif, M., Alam, M., Khan, I. A., . . . Jamal, Y. (2019). Major constraints for global rice production. In Advances in rice research for abiotic stress tolerance (pp. 1-22): Elsevier. DOI: https://doi.org/10.1016/B978-0-12-814332-2.00001-0

Farooq, M. U., Bashir, M. F., Khan, M. U. S., Iqbal, B., and Ali, Q. (2021). Role of crispr to improve abiotic stress tolerance in crop plants. Biological and Clinical Sciences Research Journal 2021. https://doi.org/10.54112/bcsrj.v2021i1.69 DOI: https://doi.org/10.54112/bcsrj.v2021i1.69

Ganie, S. A., Molla, K. A., Henry, R. J., Bhat, K., & Mondal, T. K. (2019). Advances in understanding salt tolerance in rice. Theoretical and Applied Genetics, 132, 851-870. https://doi.org/10.1016/B978-0-12-814332-2.00001-0 DOI: https://doi.org/10.1007/s00122-019-03301-8

Gerona, M. E. B., Deocampo, M. P., Egdane, J. A., Ismail, A. M., & Dionisio-Sese, M. L. (2019). Physiological responses of contrasting rice genotypes to salt stress at reproductive stage. Rice Science, 26(4), 207-219. https://doi.org/10.1016/j.rsci.2019.05.001 DOI: https://doi.org/10.1016/j.rsci.2019.05.001

Ghafoor, M. F., Ali, Q., and Malik, A. (2020). Effects of salicylic acid priming for salt stress tolerance in wheat. Biological and Clinical Sciences Research Journal 2020. https://doi.org/10.54112/bcsrj.v2020i1.24 DOI: https://doi.org/10.54112/bcsrj.v2020i1.24

Gul, Z., Tang, Z.-H., Arif, M., & Ye, Z. (2022). An insight into abiotic stress and influx tolerance mechanisms in plants to cope in saline environments. Biology, 11(4), 597. https://doi.org/10.3390/biology11040597 DOI: https://doi.org/10.3390/biology11040597

Hasanuzzaman, M., Anee, T. I., Bhuiyan, T. F., Nahar, K., & Fujita, M. (2019). Emerging role of osmolytes in enhancing abiotic stress tolerance in rice. In Advances in rice research for abiotic stress tolerance (pp. 677-708): Elsevier. https://doi.org/10.1016/B978-0-12-814332-2.00033-2 DOI: https://doi.org/10.1016/B978-0-12-814332-2.00033-2

Hasanuzzaman, M., Bhuyan, M. B., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A., & Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), 384. https://doi.org/10.3390/antiox8090384 DOI: https://doi.org/10.3390/antiox8090384

He, Y., Li, L., Zhang, Z., & Wu, J.-L. (2018). Identification and comparative analysis of premature senescence leaf mutants in rice (Oryza sativa L.). International Journal of Molecular Sciences, 19(1), 140. https://doi.org/10.3390/ijms19010140 DOI: https://doi.org/10.3390/ijms19010140

Hu, Q., Wang, W., Lu, Q., Huang, J., Peng, S., & Cui, K. (2021). Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage. BMC Plant Biology, 21(1), 1-17. https://doi.org/10.1186/s12870-021-03209-w DOI: https://doi.org/10.1186/s12870-021-03209-w

Huqe, M. A. S., Haque, M. S., Sagar, A., Uddin, M. N., Hossain, M. A., Hossain, A. Z., . . . Ueda, A. (2021). Characterization of maize hybrids (Zea mays L.) for detecting salt tolerance based on morpho-physiological characteristics, ion accumulation and genetic variability at early vegetative stage. Plants, 10(11), 2549. https://doi.org/10.3390/plants10112549 DOI: https://doi.org/10.3390/plants10112549

Hussain, M., Ahmad, S., Hussain, S., Lal, R., Ul-Allah, S., & Nawaz, A. (2018). Rice in saline soils: physiology, biochemistry, genetics, and management. Advances in agronomy, 148, 231-287.https://doi.org/10.1016/bs.agron.2017.11.002 DOI: https://doi.org/10.1016/bs.agron.2017.11.002

Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q., & Zhang, J. (2019). Salinity stress in arid and semi-arid climates: Effects and management in field crops. Climate change and agriculture, 13, 201-226. http://dx.doi.org/10.5772/intechopen.84405 DOI: https://doi.org/10.5772/intechopen.87982

Iqbal, S., Ali, Q., and Malik, A. (2021). Effects of seed priming with salicylic acid on zea mays seedlings grown under salt stress conditions. Biological and Clinical Sciences Research Journal 2021. https://doi.org/10.54112/bcsrj.v2021i1.65 DOI: https://doi.org/10.54112/bcsrj.v2021i1.65

Iqra, L., Rashid, M. S., Ali, Q., Latif, I., and Mailk, A. (2020a). Evaluation for Na+/K+ ratio under salt stress condition in wheat. Life Sci J 17, 43-47.

Iqra, L., Rashid, M. S., Ali, Q., Latif, I., and Malik, A. (2020b). Evaluation of genetic variability for salt tolerance in wheat. Biological and Clinical Sciences Research Journal 2020. https://doi.org/10.54112/bcsrj.v2020i1.16 DOI: https://doi.org/10.54112/bcsrj.v2020i1.16

Jam, B. J., Shekari, F., Andalibi, B., Fotovat, R., Jafarian, V., Najafi, J., . . . Mastinu, A. (2023). Impact of silicon foliar application on the growth and physiological traits of Carthamus tinctorius L. exposed to salt stress. Silicon, 15(3), 1235-1245. https://doi.org/10.1007/s12633-022-02090-y DOI: https://doi.org/10.1007/s12633-022-02090-y

Karalija, E., & Selović, A. (2018). The effect of hydro and proline seed priming on growth, proline and sugar content, and antioxidant activity of maize under cadmium stress. Environmental Science and Pollution Research, 25(33), 33370-33380. https://doi.org/10.1007/s11356-018-3220-7 DOI: https://doi.org/10.1007/s11356-018-3220-7

Keisham, M., Mukherjee, S., & Bhatla, S. C. (2018). Mechanisms of sodium transport in plants—progresses and challenges. International Journal of Molecular Sciences, 19(3), 647. https://doi.org/10.3390/ijms19030647 DOI: https://doi.org/10.3390/ijms19030647

Khadka, K., Earl, H. J., Raizada, M. N., & Navabi, A. (2020). A physio-morphological trait-based approach for breeding drought tolerant wheat. Frontiers in plant science, 11, 715. https://doi.org/10.3389/fpls.2020.00715 DOI: https://doi.org/10.3389/fpls.2020.00715

Kumar, P., & Sharma, P. K. (2020). Soil salinity and food security in India. Frontiers in Sustainable Food Systems, 4, 533781. https://doi.org/10.3389/fsufs.2020.533781 DOI: https://doi.org/10.3389/fsufs.2020.533781

Kumari, A., Goyal, V., & Sheokand, S. (2019). Oxidative stress and antioxidant defence under metal toxicity in halophytes. Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes, 115-155. https://doi.org/10.1007/978-981-13-3762-8_6 DOI: https://doi.org/10.1007/978-981-13-3762-8_6

Li, C., Zhang, C., Yu, T., Liu, X., Xia, X., Hou, Q., Wang, L. (2022). Annual net input fluxes of cadmium in paddy soils in karst and non-karst areas of Guangxi, China. Journal of Geochemical Exploration, 241, 107072. https://doi.org/10.1016/j.gexplo.2022.107072 DOI: https://doi.org/10.1016/j.gexplo.2022.107072

Majeed, A., & Muhammad, Z. (2019). Salinity: a major agricultural problem—causes, impacts on crop productivity and management strategies. Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches, 83-99. https://doi.org/10.1007/978-3-030-06118-0_3 DOI: https://doi.org/10.1007/978-3-030-06118-0_3

Manokari, M., Dey, A., Faisal, M., Alatar, A. A., Joshee, N., & Shekhawat, M. S. (2023). Structural alterations of Cymbopogon citratus (DC.) Stapf leaves and roots caused by silicon nanoparticles during in vitro propagation. Industrial Crops and Products, 197, 116648. https://doi.org/10.1016/j.indcrop.2023.116648 DOI: https://doi.org/10.1016/j.indcrop.2023.116648

Mazhar, T., Ali, Q., and Malik, M. (2020). Effects of salt and drought stress on growth traits of Zea mays seedlings. Life Science Journal 17, 48-54.

McHugh, J. (2021). An Unholy Brew: Alcohol in Indian History and Religions: Oxford University Press. 10.1093/oso/9780199375936.003.0012 DOI: https://doi.org/10.1093/oso/9780199375936.001.0001

Meena, H., Yadav, R., Jain, N., & Meena, M. (2022). Sodium accumulation trend in the different quality seed, cultivars, and yield potential of peanut under salinity stress. Journal of Plant Nutrition, 45(20), 3129-3144. https://doi.org/10.1080/01904167.2022.2046068 DOI: https://doi.org/10.1080/01904167.2022.2046068

Mohapatra, P. K., Sahu, B. B., Mohapatra, P. K., & Sahu, B. B. (2022). Botany of Rice Plant. Panicle Architecture of Rice and its Relationship with Grain Filling, 27-48. https://doi.org/10.1007/978-3-030-67897-5 DOI: https://doi.org/10.1007/978-3-030-67897-5_2

Mohidem, N. A., Hashim, N., Shamsudin, R., & Che Man, H. (2022). Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture, 12(6), 741.https://doi.org/10.3390/agriculture12060741 DOI: https://doi.org/10.3390/agriculture12060741

Morton, M. J., Awlia, M., Al‐Tamimi, N., Saade, S., Pailles, Y., Negrão, S., & Tester, M. (2019). Salt stress under the scalpel–dissecting the genetics of salt tolerance. The Plant Journal, 97(1), 148-163. https://doi.org/10.1111/tpj.14189 DOI: https://doi.org/10.1111/tpj.14189

Munawar, S., ul Qamar, M. T., Mustafa, G., Khan, M. S., & Joyia, F. A. (2020). Role of biotechnology in climate resilient agriculture. Environment, climate, plant and vegetation growth, 339-365. https://doi.org/10.1007/978-3-030-49732-3_14 DOI: https://doi.org/10.1007/978-3-030-49732-3_14

Naseem, S., Ali, Q., and Malik, A. (2020). Evaluation of maize seedling traits under salt stress. Biological and Clinical Sciences Research Journal 2020. https://doi.org/10.54112/bcsrj.v2020i1.25 DOI: https://doi.org/10.54112/bcsrj.v2020i1.25

Okon, O. G. (2019). Effect of salinity on physiological processes in plants. Microorganisms in saline environments: strategies and functions, 237-262. https://doi.org/10.1007/978-3-030-18975-4_10 DOI: https://doi.org/10.1007/978-3-030-18975-4_10

Paik, S., Le, D. T. P., Nhu, L. T., & Mills, B. F. (2020). Salt-tolerant rice variety adoption in the Mekong River Delta: Farmer adaptation to sea-level rise. PloS one, 15(3), e0229464. https://doi.org/10.1371/journal.pone.0229464 DOI: https://doi.org/10.1371/journal.pone.0229464

Pandey, N. (2018). Antioxidant defense system in plants exposed to metal toxicity. Plants Under Metal and Metalloid Stress: Responses, Tolerance and Remediation, 107-148. https://doi.org/10.1186/1471-2229-8-87 DOI: https://doi.org/10.1007/978-981-13-2242-6_4

Panini, M., Chiesa, O., Troczka, B. J., Mallott, M., Manicardi, G. C., Cassanelli, S., Bass, C. (2021). Transposon-mediated insertional mutagenesis unmasks recessive insecticide resistance in the aphid Myzus persicae. Proceedings of the National Academy of Sciences, 118(23), e2100559118.https://doi.org/10.1073/pnas.2100559118 DOI: https://doi.org/10.1073/pnas.2100559118

Parida, A. K., Sekhar, S., Panda, B. B., Sahu, G., & Shaw, B. P. (2022). Effect of panicle morphology on grain filling and rice yield: genetic control and molecular regulation. Frontiers in Genetics, 13, 876198. https://doi.org/10.3389/fgene.2022.876198 DOI: https://doi.org/10.3389/fgene.2022.876198

Parvin, K., Hasanuzzaman, M., Bhuyan, M., Nahar, K., Mohsin, S. M., & Fujita, M. (2019). Comparative physiological and biochemical changes in tomato (Solanum lycopersicum L.) under salt stress and recovery: role of antioxidant defense and glyoxalase systems. Antioxidants, 8(9), 350. https://doi.org/10.3390/antiox8090350 DOI: https://doi.org/10.3390/antiox8090350

Polash, M. A. S., Sakil, M. A., & Hossain, M. A. (2019). Plants responses and their physiological and biochemical defense mechanisms against salinity: A review. Trop. Plant Res, 6, 250-274. DOI: https://doi.org/10.22271/tpr.2019.v6.i2.35

Pour-Aboughadareh, A., Mehrvar, M. R., Sanjani, S., Amini, A., Nikkhah-Chamanabad, H., & Asadi, A. (2021). Effects of salinity stress on seedling biomass, physiochemical properties, and grain yield in different breeding wheat genotypes. Acta Physiologiae Plantarum, 43, 1-14. https://doi.org/10.1007/s11738-021-03265-7 DOI: https://doi.org/10.1007/s11738-021-03265-7

Prakash, M., & Vignesh, M. (2019). Relationship between biometric and biophysical parameters with yield in traditional rice varieties in coastal saline belts of Tamil Nadu. Indian Journal of Traditional Knowledge (IJTK), 18(4), 805-817. https://doi.org/10.56042/ijtk.v18i4.29026

Prathap, V., Ali, K., Singh, A., Vishwakarma, C., Krishnan, V., Chinnusamy, V., & Tyagi, A. (2019). Starch accumulation in rice grains subjected to drought during grain filling stage. Plant Physiology and Biochemistry, 142, 440-451.https://doi.org/10.1016/j.plaphy.2019.07.027 DOI: https://doi.org/10.1016/j.plaphy.2019.07.027

Radanielson, A. M., Gaydon, D. S., Khan, M. M. R., Chaki, A. K., Rahman, M. A., Angeles, O., . . . Ismail, A. (2018). Varietal improvement options for higher rice productivity in salt affected areas using crop modelling. Field Crops Research, 229, 27-36. https://doi.org/10.1016/j.fcr.2018.08.020 DOI: https://doi.org/10.1016/j.fcr.2018.08.020

Rasel, M., Tahjib-Ul-Arif, M., Hossain, M. A., Hassan, L., Farzana, S., & Brestic, M. (2021). Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism. Journal of Plant Growth Regulation, 40, 1853-1868. https://doi.org/10.1007/s00344-020-10235-9 DOI: https://doi.org/10.1007/s00344-020-10235-9

Ravikiran, K., Krishnamurthy, S., Warraich, A., & Sharma, P. (2018). Diversity and haplotypes of rice genotypes for seedling stage salinity tolerance analyzed through morpho-physiological and SSR markers. Field Crops Research, 220, 10-18. https://doi.org/10.1016/j.fcr.2017.04.006 DOI: https://doi.org/10.1016/j.fcr.2017.04.006

Resende, N. C., Miranda, J. H., Cooke, R., Chu, M. L., & Chou, S. C. (2019). Impacts of regional climate change on the runoff and root water uptake in corn crops in Parana, Brazil. Agricultural Water Management, 221, 556-565. https://doi.org/10.1016/j.agwat.2019.05.018 DOI: https://doi.org/10.1016/j.agwat.2019.05.018

Riaz, M., Arif, M. S., Ashraf, M. A., Mahmood, R., Yasmeen, T., Shakoor, M. B., . . . Arif, M. (2019). A comprehensive review on rice responses and tolerance to salt stress. Advances in rice research for abiotic stress tolerance, 133-158. https://doi.org/10.1016/B978-0-12-814332-2.00007-1 DOI: https://doi.org/10.1016/B978-0-12-814332-2.00007-1

Rodríguez Coca, L. I., García González, M. T., Gil Unday, Z., Jiménez Hernández, J., Rodríguez Jáuregui, M. M., & Fernández Cancio, Y. (2023). Effects of Sodium Salinity on Rice (Oryza sativa L.) Cultivation: A Review. Sustainability, 15(3), 1804. https://doi.org/10.3390/su15031804 DOI: https://doi.org/10.3390/su15031804

Saddiq, M. S., Afzal, I., Basra, S. M., Iqbal, S., & Ashraf, M. (2020). Sodium exclusion affects seed yield and physiological traits of wheat genotypes grown under salt stress. Journal of Soil Science and Plant Nutrition, 20, 1442-1456. https://doi.org/10.1007/s42729-020-00224-y DOI: https://doi.org/10.1007/s42729-020-00224-y

Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nature and Science, 17(1), 34-40.

Sakai, Y., Shimizu, C., Murata, H., Seto, H., Fukushima, R., Koga, T., & Wang, C. (2020). Changes in soil physicochemical properties and maize production following improvement of salt-affected soils using coal bio-briquette ash in northeast China. Agronomy, 10(3), 348. https://doi.org/10.3390/agronomy10030348 DOI: https://doi.org/10.3390/agronomy10030348

Samal, P., Babu, S. C., Mondal, B., & Mishra, S. N. (2022). The global rice agriculture towards 2050: An inter-continental perspective. Outlook on Agriculture, 51(2), 164-172. https://doi.org/10.1177/00307270221088338 DOI: https://doi.org/10.1177/00307270221088338

Sampangi-Ramaiah, M. H., Jagadheesh, Dey, P., Jambagi, S., Vasantha Kumari, M., Oelmueller, R., . . . Uma Shaanker, R. (2020). An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host. Scientific reports, 10(1), 3237. https://doi.org/10.1038/s41598-020-59998-x DOI: https://doi.org/10.1038/s41598-020-59998-x

Santanoo, S., Lontom, W., Dongsansuk, A., Vongcharoen, K., & Theerakulpisut, P. (2023). Photosynthesis Performance at Different Growth Stages, Growth, and Yield of Rice in Saline Fields. Plants, 12(9), 1903. https://doi.org/10.3390/plants12091903 DOI: https://doi.org/10.3390/plants12091903

Saradadevi, G. P., Das, D., Mangrauthia, S. K., Mohapatra, S., Chikkaputtaiah, C., Roorkiwal, M., . . . Sakhare, A. S. (2021). Genetic, epigenetic, genomic and microbial approaches to enhance salt tolerance of plants: A comprehensive review. Biology, 10(12), 1255. https://doi.org/10.3390/biology10121255 DOI: https://doi.org/10.3390/biology10121255

Sarwar, M., Anjum, S., Alam, M. W., Ali, Q., Ayyub, C., Haider, M. S., Ashraf, M. I., and Mahboob, W. (2022). Triacontanol regulates morphological traits and enzymatic activities of salinity affected hot pepper plants. Scientific Reports 12, 1-8. https://doi.org/10.1038/s41598-022-06516-w DOI: https://doi.org/10.1038/s41598-022-06516-w

Sarwar, M., Anjum, S., Ali, Q., Alam, M. W., Haider, M. S., and Mehboob, W. (2021). Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells. Scientific reports 11, 1-10. https://doi.org/10.1038/s41598-021-04174-y DOI: https://doi.org/10.1038/s41598-021-04174-y

Sayed, M. A., Nassar, S. M., Moustafa, E. S., Said, M. T., Börner, A., & Hamada, A. (2021). Genetic mapping reveals novel exotic and elite QTL alleles for salinity tolerance in barley. Agronomy, 11(9), 1774. : https://doi.org/10.3390/agronomy11091774 DOI: https://doi.org/10.3390/agronomy11091774

Shahid, M. A., Sarkhosh, A., Khan, N., Balal, R. M., Ali, S., Rossi, L., Garcia-Sanchez, F. (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10(7), 938. https://doi.org/10.3390/agronomy10070938 DOI: https://doi.org/10.3390/agronomy10070938

Sharma, P., & Singh, A. (2019). Reviving the productivity of salt-affected lands: technological options, constraints and research needs. Research Developments in Saline Agriculture, 591-627.https://doi.org/10.1007/978-981-13-5832-6_20 DOI: https://doi.org/10.1007/978-981-13-5832-6_20

Sharma, R. K., Abidi, N., & Misra, R. K. (2020). Assessment of agricultural sustainability-a study of farmers growing basmati rice under conventional and fair-trade systems in India. International Journal of Sustainable Agricultural Management and Informatics, 6(1), 1-21. https://doi.org/10.1504/IJSAMI.2020.106549 DOI: https://doi.org/10.1504/IJSAMI.2020.106549

Shchapova, A. (2012). Evolution of the basic chromosome number in Poaceae Barnh. Russian Journal of Genetics: Applied Research, 2, 252-259. https://doi.org/10.1134/S2079059712030100 DOI: https://doi.org/10.1134/S2079059712030100

Shingote, P. R., Kawar, P. G., Pagariya, M. C., Muley, A. B., & Babu, K. (2020). Isolation and functional validation of stress tolerant EaMYB18 gene and its comparative physio-biochemical analysis with transgenic tobacco plants overexpressing SoMYB18 and SsMYB18. 3 Biotech, 10, 1-13. https://doi.org/10.1007/s13205-020-02197-2 DOI: https://doi.org/10.1007/s13205-020-02197-2

Singh, R. K., Kota, S., & Flowers, T. J. (2021). Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. Theoretical and Applied Genetics, 134, 3495-3533. https://doi.org/10.1007/s00122-021-03890-3 DOI: https://doi.org/10.1007/s00122-021-03890-3

Singh, V., Singh, A. P., Bhadoria, J., Giri, J., Singh, J., TV, V., & Sharma, P. (2018). Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage. Protoplasma, 255, 1667-1681. https://doi.org/10.1007/s00709-018-1257-6 DOI: https://doi.org/10.1007/s00709-018-1257-6

Sofi, N. R., Hussain, A., Shikari, A. B., Sofi, M., Teeli, N., Mohiddin, F., & Bhat, N. (2020). Rice crop in Kashmir Valley: Historical perspective, challenges and opportunities for sustainable production and livelihood improvement. SKUAST Journal of Research, 22(1), 123-129.

Syeed, S., Sehar, Z., Masood, A., Anjum, N. A., & Khan, N. A. (2021). Control of elevated ion accumulation, oxidative stress, and lipid peroxidation with salicylic acid-induced accumulation of glycine betaine in salinity-exposed Vigna radiata L. Applied Biochemistry and Biotechnology, 193(10), 3301-3320. https://doi.org/10.1007/s12010-021-03595-9 DOI: https://doi.org/10.1007/s12010-021-03595-9

Tahir, T., Ali, Q., Rashid, M. S., and Malik, A. (2020). The journey of crispr-cas9 from bacterial defense mechanism to a gene editing tool in both animals and plants. Biological and Clinical Sciences Research Journal 2020. https://doi.org/10.54112/bcsrj.v2020i1.17 DOI: https://doi.org/10.54112/bcsrj.v2020i1.17

Teshome, D. T., Zharare, G. E., & Naidoo, S. (2020). The threat of the combined effect of biotic and abiotic stress factors in forestry under a changing climate. Frontiers in plant science, 11, 1874. https://doi.org/10.3389/fpls.2020.601009 DOI: https://doi.org/10.3389/fpls.2020.601009

Tessema, N., Yadeta, D., Kebede, A., & Ayele, G. T. (2022). Soil and irrigation water salinity, and its consequences for agriculture in Ethiopia: a systematic review. Agriculture, 13(1), 109. https://doi.org/10.3390/agriculture13010109 DOI: https://doi.org/10.3390/agriculture13010109

Thorat, B., Bagkar, T., & Raut, S. (2018). Responses of rice under salinity stress: A review. Int J Chem Stud, 6, 1441-1447.

Wang, C.-F., Han, G.-L., Qiao, Z.-Q., Li, Y.-X., Yang, Z.-R., & Wang, B.-S. (2022). Root Na+ content negatively correlated to salt tolerance determines the salt tolerance of Brassica napus L. inbred seedlings. Plants, 11(7), 906. https://doi.org/10.3390/plants11070906 DOI: https://doi.org/10.3390/plants11070906

Wang, Y., Wang, L., Zhou, J., Hu, S., Chen, H., Xiang, J., Zhu, D. (2019). Research progress on heat stress of rice at flowering stage. Rice Science, 26(1), 1-10. https://doi.org/10.1016/j.rsci.2018.06.009 DOI: https://doi.org/10.1016/j.rsci.2018.06.009

Wangsawang, T., Chuamnakthong, S., Ueda, A., & Sreewongchai, T. (2021). Na+ exclusion mechanism in the roots through the function of OsHKT1; 5 confers improved tolerance to salt stress in the salt-tolerant developed rice lines. Science Asia, 47(6). https://doi.org/10.2306/scienceasia1513-1874.2021.106 DOI: https://doi.org/10.2306/scienceasia1513-1874.2021.106

Wen, F., Ye, F., Xiao, Z., Liao, L., Li, T., Jia, M., . . . Wu, X. (2020). Genome-wide survey and expression analysis of calcium-dependent protein kinase (CDPK) in grass Brachypodium distachyon. BMC genomics, 21, 1-17. https://doi.org/10.1186/s12864-020-6475-6 DOI: https://doi.org/10.1186/s12864-020-6475-6

Wu, C., Tang, S., Li, G., Wang, S., Fahad, S., & Ding, Y. (2019). Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review. PeerJ, 7, e7792. https://doi.org/10.7717/peerj.7792 DOI: https://doi.org/10.7717/peerj.7792

Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., & Cai, Y. (2019). The roles of environmental factors in regulation of oxidative stress in plant. BioMed research international, 2019. https://doi.org/10.1155/2019/9732325 DOI: https://doi.org/10.1155/2019/9732325

Yadav, P., Singh, P., & Verma, O. (2022). Estimating genetic variability, heritability and genetic advance in rice (Oryza sativa L.) for yield and its components under sodic soil. The Pharma Innovation Journal, 11(1), 1386-1389.

Yang, M., Wang, C., Hassan, M. A., Li, F., Xia, X., Shi, S., He, Z. (2021). QTL mapping of root traits in wheat under different phosphorus levels using hydroponic culture. BMC genomics, 22(1), 1-12.https://doi.org/10.1186/s12864-021-07425-4 DOI: https://doi.org/10.1186/s12864-021-07425-4

Zaman, M., Shahid, S. A., Heng, L., Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques, 43-53. https://doi.org/10.1007/978-3-319-96190-3_2 DOI: https://doi.org/10.1007/978-3-319-96190-3_2




How to Cite

ABBAS, A., RASHAD, A., REHMAN, A., & BUKHARI, M. (2024). EXPLORING THE RESPONSE MECHANISMS OF RICE TO SALINITY STRESS. Bulletin of Biological and Allied Sciences Research, 2024(1), 58. https://doi.org/10.54112/bbasr.v2024i1.58

Most read articles by the same author(s)