ADVANCEMENTS IN GENOMIC TECHNOLOGIES AND THEIR IMPACT ON CROP IMPROVEMENT AND BREEDING METHODS
DOI:
https://doi.org/10.54112/bbasr.v2024i1.61Keywords:
Genomic Prediction, GWAS, PCR, CRISPER/Cas9, Gene ExpressionAbstract
Recent advances in genome sequencing of essential crop plants allow genotype and phenotype data integration in crop development. Advanced statistical methods identified quantitative trait genes. Genomic prediction has been used successfully in breeding animals and is now also used in breeding plants. Biometric statistics, genome-wide markers, and phenotyping enhance gene discovery. This makes biotechnology agricultural plant solutions possible. Improved fertilizer efficiency requires precise plant phenotyping in multiple habitats and seasons, which was previously expensive. DNA sequencing, genetic engineering, and PCR-based marker-assisted selection have made it cheaper. New methods like next-generation sequencing can target climate-responsive crop development. It examines Oryza sativa L. flower opening and closing molecularly and hybrid breeding success in diverse plant types. It discusses CRISPR/Cas9 for crop trait improvement and metabolic studies for Triticum aestivum L. quality group determination. Genetic analysis should use species-specific techniques, according to the study. A Zea mays L. callus induction and growth study examined how media and growth conditions affect callus development. Another drought-stressed Triticum aestivum L. cultivar gene expression study suggests employing RNA editing to respond to environmental stress. PCR-based markers have helped scientists find important genes in landraces that have changed to survive harsh farming conditions, giving them targets for crop growth.
Downloads
References
Alghamdi, S. S., and Migdadi, H. M. (2020). Morphological diversity of faba bean (Vicia faba L.) M2 mutant populations induced by gamma radiation and diethyl sulfate. Journal of King Saud University-Science 32, 1647-1658. DOI: https://doi.org/10.1016/j.jksus.2019.12.024
Ali, A., Cao, J., Jiang, H., Chang, C., Zhang, H.-P., Sheikh, S. W., Shah, L., and Ma, C. (2019). Unraveling molecular and genetic studies of wheat (Triticum aestivum L.) resistance against factors causing pre-harvest sprouting. Agronomy 9, 117. DOI: https://doi.org/10.3390/agronomy9030117
Andrade, P. (2019). Mobile social hybrids and drone art. In "Proceedings of the 9th International Conference on Digital and Interactive Arts", pp. 1-5. DOI: https://doi.org/10.1145/3359852.3359879
Ansari, S. (2021). Mutation breeding for quality improvement: A case study for oilseed crops shazia bi ansari, aamir raina. Mutagenesis, Cytotoxicity and Crop Improvement: Revolutionizing Food Science 171.
Bai, T., Zhang, P., Guo, Z., Chetwynd, A. J., Zhang, M., Adeel, M., Li, M., Guo, K., Gao, R., and Li, J. (2021). Different physiological responses of C3 and C4 plants to nanomaterials. Environmental Science and Pollution Research 28, 25542-25551. DOI: https://doi.org/10.1007/s11356-021-12507-7
Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E., and Schroeder, J. I. (2019). Genetic strategies for improving crop yields. Nature 575, 109-118. DOI: https://doi.org/10.1038/s41586-019-1679-0
Beszterda, M., and Nogala‐Kałucka, M. (2019). Current research developments on the processing and improvement of the nutritional quality of rapeseed (Brassica napus L.). European Journal of Lipid Science and Technology 121, 1800045. DOI: https://doi.org/10.1002/ejlt.201800045
Bett, C. C. (2021). Direct organogenesis and callus induction of coconut from seed embryo for mass propagation, JKUAT-IBR.
Brzozowski, L. J., Szuleta, E., Phillips, T. D., Van Sanford, D. A., and Clark, A. J. (2023). Breeding cereal rye (Secale cereale) for quality traits. Crop Science 63, 1964-1987. DOI: https://doi.org/10.1002/csc2.21022
Callaghan, J. (2020). Development of Rapid Propagation Systems for Hemerocallis sp.(Daylilies), University of Guelph.
Chu, P., and Agapito-Tenfen, S. Z. (2022). Unintended genomic outcomes in current and next generation GM techniques: A systematic review. Plants 11, 2997. DOI: https://doi.org/10.3390/plants11212997
Cobb, J. N., Juma, R. U., Biswas, P. S., Arbelaez, J. D., Rutkoski, J., Atlin, G., Hagen, T., Quinn, M., and Ng, E. H. (2019). Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theoretical and applied genetics 132, 627-645. DOI: https://doi.org/10.1007/s00122-019-03317-0
Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., De Los Campos, G., Burgueño, J., González-Camacho, J. M., Pérez-Elizalde, S., and Beyene, Y. (2017). Genomic selection in plant breeding: methods, models, and perspectives. Trends in plant science 22, 961-975. DOI: https://doi.org/10.1016/j.tplants.2017.08.011
Debaeke, P., and Izquierdo, N. G. (2021). Sunflower. In "Crop Physiology Case Histories for Major Crops", pp. 482-517. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-819194-1.00016-5
Degefa, I. (2019). Plant breeding methods: In brief for student. International Journal of Agriculture and Agribusiness 3, 156-203.
Deyto, R. C., and Cervancia, C. R. (2022). Floral Biology and Pollination of Red Hot F1 Hybrid Hot Pepper (Capsicum frutescens x C. annuum) in the Philippines. Philippine Agricultural Scientist 105. DOI: https://doi.org/10.62550/KCD134021
Gomez-Zavaglia, A., Mejuto, J. C., and Simal-Gandara, J. (2020). Mitigation of emerging implications of climate change on food production systems. Food Research International 134, 109256. DOI: https://doi.org/10.1016/j.foodres.2020.109256
Kabir, M. R., and Nonhebel, H. M. (2021). Reinvestigation of THOUSAND-GRAIN WEIGHT 6 grain weight genes in wheat and rice indicates a role in pollen development rather than regulation of auxin content in grains. Theoretical and Applied Genetics 134, 2051-2062. DOI: https://doi.org/10.1007/s00122-021-03804-3
Li, Y., Zhao, J., Krooneman, J., and Euverink, G. J. W. (2021). Strategies to boost anaerobic digestion performance of cow manure: Laboratory achievements and their full-scale application potential. Science of The Total Environment 755, 142940. DOI: https://doi.org/10.1016/j.scitotenv.2020.142940
Martignago, D., Rico-Medina, A., Blasco-Escámez, D., Fontanet-Manzaneque, J. B., and Caño-Delgado, A. I. (2020). Drought resistance by engineering plant tissue-specific responses. Frontiers in plant science 10, 1676. DOI: https://doi.org/10.3389/fpls.2019.01676
Meena, H., Sujatha, M., and Reddy, A. V. (2022). Advances in Male Sterility Systems and Hybrid Breeding in Sunflower. In "Plant Male Sterility Systems for Accelerating Crop Improvement", pp. 91-147. Springer. DOI: https://doi.org/10.1007/978-981-19-3808-5_6
Mulugeta Kabithiymer, W. (2020). Quantifying potential and water-limited yields and yield gaps of faba bean (vica faba l.) in ethiopia: exploring management options for closing yield gaps using crop modeling, Jimma University.
Pandita, D., Pandita, A., and Wani, S. H. (2022). Transgenic approach: A Key to Enrich Soybean Oil Quality. In "Soybean Improvement: Physiological, Molecular and Genetic Perspectives", pp. 203-213. Springer. DOI: https://doi.org/10.1007/978-3-031-12232-3_11
Piñol, J., Senar, M. A., and Symondson, W. O. (2019). The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Molecular ecology 28, 407-419. DOI: https://doi.org/10.1111/mec.14776
Rasmussen, S. K. (2020). Molecular genetics, genomics, and biotechnology in crop plant breeding. Vol. 10, pp. 439. MDPI. DOI: https://doi.org/10.3390/agronomy10030439
Rebetzke, G., Jimenez-Berni, J., Fischer, R., Deery, D., and Smith, D. (2019). High-throughput phenotyping to enhance the use of crop genetic resources. Plant Science 282, 40-48. DOI: https://doi.org/10.1016/j.plantsci.2018.06.017
Ribeiro, L. F., Amarelle, V., Alves, L. d. F., Viana de Siqueira, G. M., Lovate, G. L., Borelli, T. C., and Guazzaroni, M.-E. (2019). Genetically engineered proteins to improve biomass conversion: New advances and challenges for tailoring biocatalysts. Molecules 24, 2879. DOI: https://doi.org/10.3390/molecules24162879
Romero, F. M., and Gatica-Arias, A. (2019). CRISPR/Cas9: development and application in rice breeding. Rice Science 26, 265-281. DOI: https://doi.org/10.1016/j.rsci.2019.08.001
Sainger, M., Jaiwal, A., Sainger, P. A., Chaudhary, D., Jaiwal, R., and Jaiwal, P. K. (2017). Advances in genetic improvement of Camelina sativa for biofuel and industrial bio-products. Renewable and sustainable energy reviews 68, 623-637. DOI: https://doi.org/10.1016/j.rser.2016.10.023
Saini, P., Saini, P., Kaur, J. J., Francies, R. M., Gani, M., Rajendra, A. A., Negi, N., Jagtap, A., Kadam, A., and Singh, C. (2020). Molecular approaches for harvesting natural diversity for crop improvement. Rediscovery of genetic and genomic resources for future food security, 67-169. DOI: https://doi.org/10.1007/978-981-15-0156-2_3
Salgotra, R. K., and Stewart Jr, C. N. (2020). Functional markers for precision plant breeding. International journal of molecular sciences 21, 4792. DOI: https://doi.org/10.3390/ijms21134792
Sandhu, N., Sethi, M., Kumar, A., Dang, D., Singh, J., and Chhuneja, P. (2021). Biochemical and genetic approaches improving nitrogen use efficiency in cereal crops: A review. Frontiers in plant science 12, 657629. DOI: https://doi.org/10.3389/fpls.2021.657629
Singh, A., Ramakrishna, G., Kaila, T., Saxena, S., Sharma, S., Gaikwad, A. B., Abdin, M., and Gaikwad, K. (2022). Next-generation sequencing technologies: Approaches and applications for crop improvement. In "Genomics of Cereal Crops", pp. 31-94. Springer. DOI: https://doi.org/10.1007/978-1-0716-2533-0_3
Singh, J., Sharma, A., Sharma, V., Gaikwad, P. N., Sidhu, G. S., Kaur, G., Kaur, N., Jindal, T., Chhuneja, P., and Rattanpal, H. (2023). Comprehensive genome-wide identification and transferability of chromosome-specific highly variable microsatellite markers from citrus species. Scientific Reports 13, 10919. DOI: https://doi.org/10.1038/s41598-023-37024-0
Tao, Y., Chen, B., Kang, M., Liu, Y., and Wang, J. (2021). Genome-wide evidence for complex hybridization and demographic history in a group of Cycas from China. Frontiers in Genetics 12, 717200. DOI: https://doi.org/10.3389/fgene.2021.717200
Ton, L. B., Neik, T. X., and Batley, J. (2020). The use of genetic and gene technologies in shaping modern rapeseed cultivars (Brassica napus L.). Genes 11, 1161. DOI: https://doi.org/10.3390/genes11101161
Uddin, M. N., Islam, A. S., Bala, S. K., Islam, G. T., Adhikary, S., Saha, D., Haque, S., Fahad, M. G. R., and Akter, R. (2019). Mapping of climate vulnerability of the coastal region of Bangladesh using principal component analysis. Applied geography 102, 47-57. DOI: https://doi.org/10.1016/j.apgeog.2018.12.011
Wani, S. H., Thakur, A. K., and Khan, Y. J. (2020). Brassica Improvement. DOI: https://doi.org/10.1007/978-3-030-34694-2
Zhang, J., Zheng, H., Zeng, X., Zhuang, H., Wang, H., Tang, J., Chen, H., Ling, Y., and Li, Y. (2019). Characterization and Gene Mapping of non-open hull 1 (noh1) Mutant in Rice (Oryza sativa L.). Agronomy 9, 56. DOI: https://doi.org/10.3390/agronomy9020056
Zhang, L., Song, Y., Li, J., Liu, J., Zhang, Z., Xu, Y., Fan, D., Liu, M., Ren, Y., and Xi, X. (2023). Development, Identification and Validation of a Novel SSR Molecular Marker for Heat Resistance of Grapes Based on miRNA. Horticulturae 9, 931. DOI: https://doi.org/10.3390/horticulturae9080931
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 AU REHMAN, A ABBAS, A ARSHAD, GM RAZA, M UMAR, MS BUKHARI
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.