GENOME EDITING FOR EARLY AND LATE FLOWERING IN PLANTS
DOI:
https://doi.org/10.54112/bbasr.v2023i1.45Keywords:
CRISPR-Cas9, climate change, genetic modification, flowering time, genome editingAbstract
The use of genome editing to change the blooming period of plants has emerged as a valuable approach in contemporary agricultural research. This chapter delves into the complex processes that control early and late flowering in plants and how genome editing techniques such as CRISPR-Cas9 have altered the field. The chapter begins with an overview of the genetic pathways and regulatory networks that determine flowering time and then dives into the vital functions of key genes such as FLOWERING LOCUS T (FT), CONSTANS (CO), and FLOWERING LOCUS C (FLC). The chapter then delves into the many genome editing methods used to modify blooming time, focusing on augmentation and delay. Researchers have improved agricultural productivity, stress tolerance, and adaptation to changing climatic conditions by targeting regulatory genes. Case studies show effective genome editing applications in various plant species, indicating the possibility of crop development with personalized flowering time alterations. The ethical concerns and potential ecological implications of genome-edited plants with changed flowering times are also discussed, highlighting the significance of responsible research and environmental risk assessment. Furthermore, the chapter investigates the challenges and potential paths in the realm of genome editing for modifying flowering times in plants. This includes a comprehensive review of techniques to achieve more precise genetic modifications, strategies for reducing unintended alterations, and establishing regulatory guidelines.
Downloads
References
Achard, P., Baghour, M., Chapple, A., Hedden, P., Van Der Straeten, D., Genschik, P., Moritz, T., and Harberd, N. P. (2007). The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proceedings of the National Academy of Sciences 104, 6484-6489. DOI:https://doi.org/10.1073/pnas.0610717104 DOI: https://doi.org/10.1073/pnas.0610717104
Alexandre, C. M., and Hennig, L. (2008). FLC or not FLC: the other side of vernalization. Journal of experimental botany 59, 1127-1135. DOI:https://doi.org/10.1093/jxb/ern070 DOI: https://doi.org/10.1093/jxb/ern070
Ali, Z., Mahas, A., and Mahfouz, M. (2018). CRISPR/Cas13 as a tool for RNA interference. Trends in plant science 23, 374-378. DOI:https://doi.org/10.1016/j.tplants.2018.03.003 DOI: https://doi.org/10.1016/j.tplants.2018.03.003
Altpeter, F., Baisakh, N., Beachy, R., Bock, R., Capell, T., Christou, P., Daniell, H., Datta, K., Datta, S., and Dix, P. J. (2005). Particle bombardment and the genetic enhancement of crops: myths and realities. Molecular Breeding 15, 305-327. doi:10.1007/s11032-004-8001-y DOI: https://doi.org/10.1007/s11032-004-8001-y
Amasino, R. (2010). Seasonal and developmental timing of flowering. The Plant Journal 61, 1001-1013. https://doi.org/10.1111/j.1365-313X.2010.04148.x DOI: https://doi.org/10.1111/j.1365-313X.2010.04148.x
Amasino, R. M., and Michaels, S. D. (2010). The timing of flowering. Plant physiology 154, 516-520. https://doi.org/10.1104/pp.110.161653 DOI: https://doi.org/10.1104/pp.110.161653
An, H., Roussot, C., Suárez-López, P., Corbesier, L., Vincent, C., Piñeiro, M., Hepworth, S., Mouradov, A., Justin, S., and Turnbull, C. (2004). CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. https://doi.org/10.1242/dev.01231 DOI: https://doi.org/10.1242/dev.01231
Andrés, F., and Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics 13, 627-639. doi:10.1038/nrg3291 DOI: https://doi.org/10.1038/nrg3291
Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., and Raguram, A. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157. doi:10.1038/s41586-019-1711-4 DOI: https://doi.org/10.1038/s41586-019-1711-4
Araki, M., and Ishii, T. (2015). Towards social acceptance of plant breeding by genome editing. Trends in plant science 20, 145-149. DOI:https://doi.org/10.1016/j.tplants.2015.01.010 DOI: https://doi.org/10.1016/j.tplants.2015.01.010
Bae, S., Park, J., and Kim, J.-S. (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475. https://doi.org/10.1093/bioinformatics/btu048 DOI: https://doi.org/10.1093/bioinformatics/btu048
Bao, S., Hua, C., Shen, L., and Yu, H. (2020). New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology 62, 118-131. https://doi.org/10.1111/jipb.12892 DOI: https://doi.org/10.1111/jipb.12892
Bastow, R., Mylne, J. S., Lister, C., Lippman, Z., Martienssen, R. A., and Dean, C. (2004). Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164-167. doi:10.1038/nature02269 DOI: https://doi.org/10.1038/nature02269
Bates, G. W. (1999). Plant transformation via protoplast electroporation. Plant cell culture protocols, 359-366. doi:10.1385/1-59259-583-9:359 DOI: https://doi.org/10.1385/1-59259-583-9:359
Bharat, S. S., Li, S., Li, J., Yan, L., and Xia, L. (2020). Base editing in plants: Current status and challenges. The Crop Journal 8, 384-395. https://doi.org/10.1016/j.cj.2019.10.002 DOI: https://doi.org/10.1016/j.cj.2019.10.002
Bogdanove, A. J., and Voytas, D. F. (2011). TAL effectors: customizable proteins for DNA targeting. Science 333, 1843-1846. DOI:10.1126/science.1204094 DOI: https://doi.org/10.1126/science.1204094
Bortesi, L., and Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology advances 33, 41-52. doi.org/10.1016/j.biotechadv.2014.12.006 DOI: https://doi.org/10.1016/j.biotechadv.2014.12.006
Capovilla, G., Symeonidi, E., Wu, R., and Schmid, M. (2017). Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana. Journal of experimental botany 68, 5117-5127. https://doi.org/10.1093/jxb/erx328 DOI: https://doi.org/10.1093/jxb/erx328
Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics 188, 773-782. https://doi.org/10.1534/genetics.111.131433 DOI: https://doi.org/10.1534/genetics.111.131433
Castiglioni, P., Warner, D., Bensen, R. J., Anstrom, D. C., Harrison, J., Stoecker, M., Abad, M., Kumar, G., Salvador, S., and D'Ordine, R. (2008). Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant physiology 147, 446-455. https://doi.org/10.1104/pp.108.118828 DOI: https://doi.org/10.1104/pp.108.118828
Castro Marín, I., Loef, I., Bartetzko, L., Searle, I., Coupland, G., Stitt, M., and Osuna, D. (2011). Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta 233, 539-552. doi:10.1007/s00425-010-1316-5 DOI: https://doi.org/10.1007/s00425-010-1316-5
Chen, A., and Dubcovsky, J. (2012). Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS genetics 8, e1003134. doi.org/10.1371/journal.pgen.1003134 DOI: https://doi.org/10.1371/journal.pgen.1003134
Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S., and Kim, J.-S. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome research 24, 132-141. doi:10.1101/gr.162339.113 DOI: https://doi.org/10.1101/gr.162339.113
Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A. J., and Voytas, D. F. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757-761. https://doi.org/10.1534/genetics.110.120717 DOI: https://doi.org/10.1534/genetics.110.120717
Cortinovis, G., Di Vittori, V., Bellucci, E., Bitocchi, E., and Papa, R. (2020). Adaptation to novel environments during crop diversification. Current opinion in plant biology 56, 203-217. doi:10.1016/j.pbi.2019.12.011 DOI: https://doi.org/10.1016/j.pbi.2019.12.011
De Lucia, F., and Dean, C. (2011). Long non-coding RNAs and chromatin regulation. Current opinion in plant biology 14, 168-173. https://doi.org/10.1016/j.pbi.2010.11.006 DOI: https://doi.org/10.1016/j.pbi.2010.11.006
Demirer, G. S., and Landry, M. P. (2017). Delivering genes to plants. Chemical engineering progress 113, 40-45. https://escholarship.org/uc/item/2hp0j2g2
Distelfeld, A., Li, C., and Dubcovsky, J. (2009). Regulation of flowering in temperate cereals. Current opinion in plant biology 12, 178-184. https://doi.org/10.1016/j.pbi.2008.12.010t DOI: https://doi.org/10.1016/j.pbi.2008.12.010
Doudna, J. A., and Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096. DOI:10.1126/science.1258096 DOI: https://doi.org/10.1126/science.1258096
Eş, I., Gavahian, M., Marti-Quijal, F. J., Lorenzo, J. M., Khaneghah, A. M., Tsatsanis, C., Kampranis, S. C., and Barba, F. J. (2019). The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated challenges. Biotechnology advances 37, 410-421. .https://doi.org/10.1016/j.biotechadv.2019.02.006 DOI: https://doi.org/10.1016/j.biotechadv.2019.02.006
Fan, S., Zhang, D., Gao, C., Wan, S., Lei, C., Wang, J., Zuo, X., Dong, F., Li, Y., and Shah, K. (2018). Mediation of flower induction by gibberellin and its inhibitor paclobutrazol: mRNA and miRNA integration comprises complex regulatory cross-talk in apple. Plant and Cell Physiology 59, 2288-2307. https://doi.org/10.1093/pcp/pcy154 DOI: https://doi.org/10.1093/pcp/pcy154
Fornara, F., and Coupland, G. (2009). Plant phase transitions make a SPLash. Cell 138, 625-627. DOI:https://doi.org/10.1016/j.cell.2009.08.011 DOI: https://doi.org/10.1016/j.cell.2009.08.011
Gao, H., Zheng, X.-M., Fei, G., Chen, J., Jin, M., Ren, Y., Wu, W., Zhou, K., Sheng, P., and Zhou, F. (2013). Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS genetics 9, e1003281. https://doi.org/10.1371/journal.pgen.1003281 DOI: https://doi.org/10.1371/journal.pgen.1003281
Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., and Liu, D. R. (2017). Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature 551, 464-471. doi:10.1038/nature24644 DOI: https://doi.org/10.1038/nature24644
Gomi, K., and Matsuoka, M. (2003). Gibberellin signalling pathway. Current opinion in plant biology 6, 489-493. https://doi.org/10.1038/nature24644 DOI: https://doi.org/10.1016/S1369-5266(03)00079-7
Greenup, A., Peacock, W. J., Dennis, E. S., and Trevaskis, B. (2009). The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Annals of botany 103, 1165-1172. https://doi.org/10.1093/aob/mcp063 DOI: https://doi.org/10.1093/aob/mcp063
Hayama, R., and Coupland, G. (2004). The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant physiology 135, 677-684. https://doi.org/10.1104/pp.104.042614 DOI: https://doi.org/10.1104/pp.104.042614
Hepworth, J., and Dean, C. (2015). Flowering Locus C’s lessons: conserved chromatin switches underpinning developmental timing and adaptation. Plant physiology 168, 1237-1245. https://doi.org/10.1104/pp.15.00496 DOI: https://doi.org/10.1104/pp.15.00496
Hong, Y., and Jackson, S. (2015). Floral induction and flower formation—the role and potential applications of mi RNA s. Plant biotechnology journal 13, 282-292. https://doi.org/10.1111/pbi.12340 DOI: https://doi.org/10.1111/pbi.12340
Imaizumi, T., and Kay, S. A. (2006). Photoperiodic control of flowering: not only by coincidence. Trends in plant science 11, 550-558. DOI:https://doi.org/10.1016/j.tplants.2006.09.004 DOI: https://doi.org/10.1016/j.tplants.2006.09.004
Jackson, S. D. (2009). Plant responses to photoperiod. New Phytologist 181, 517-531. https://doi.org/10.1111/j.1469-8137.2008.02681.x DOI: https://doi.org/10.1111/j.1469-8137.2008.02681.x
Jaganathan, D., Ramasamy, K., Sellamuthu, G., Jayabalan, S., and Venkataraman, G. (2018). CRISPR for crop improvement: an update review. Frontiers in plant science 9, 985. https://doi.org/10.3389/fpls.2018.00985 DOI: https://doi.org/10.3389/fpls.2018.00985
Ji, Q., Xu, X., and Wang, K. (2013). Genetic transformation of major cereal crops. International Journal of Developmental Biology 57, 495-508. doi:10.1387/ijdb.130244kw DOI: https://doi.org/10.1387/ijdb.130244kw
Johansson, M., and Staiger, D. (2015). Time to flower: interplay between photoperiod and the circadian clock. Journal of experimental botany 66, 719-730. https://doi.org/10.1093/jxb/eru441 DOI: https://doi.org/10.1093/jxb/eru441
Jung, J.-H., Lee, S., Yun, J., Lee, M., and Park, C.-M. (2014). The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning. Plant Science 215, 29-38. doi.org/10.1016/j.plantsci.2013.10.010 DOI: https://doi.org/10.1016/j.plantsci.2013.10.010
Jung, J.-H., Seo, P. J., Kang, S. K., and Park, C.-M. (2011). miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant molecular biology 76, 35-45. doi.org/10.1007/s11103-011-9759-z DOI: https://doi.org/10.1007/s11103-011-9759-z
Klee, H., Horsch, R., and Rogers, S. (1987). Agrobacterium-mediated plant transformation and its further applications to plant biology. Annual Review of Plant Physiology 38, 467-486. doi.org/10.1146/annurev.pp.38.060187.002343 DOI: https://doi.org/10.1146/annurev.pp.38.060187.002343
Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., and Joung, J. K. (2016). High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495. https://doi.org/10.1038/nature16526 DOI: https://doi.org/10.1038/nature16526
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., and Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424. https://doi.org/10.1038/nature17946 DOI: https://doi.org/10.1038/nature17946
Koornneef, M., Alonso-Blanco, C., Peeters, A. J., and Soppe, W. (1998). Genetic control of flowering time in Arabidopsis. Annual review of plant biology 49, 345-370. https://doi.org/10.1146/annurev.arplant.49.1.345 DOI: https://doi.org/10.1146/annurev.arplant.49.1.345
Kumar, S. V., and Wigge, P. A. (2010). H2A. Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140, 136-147. DOI:https://doi.org/10.1016/j.cell.2009.11.006 DOI: https://doi.org/10.1016/j.cell.2009.11.006
Li, B., Du, X., Fei, Y., Wang, F., Xu, Y., Li, X., Li, W., Chen, Z., Fan, F., and Wang, J. (2021). Efficient breeding of early-maturing rice cultivar by editing PHYC via CRISPR/Cas9. Rice 14, 1-4. https://doi.org/10.1186/s12284-021-00527-3 DOI: https://doi.org/10.1186/s12284-021-00527-3
Li, C., and Dubcovsky, J. (2008). Wheat FT protein regulates VRN1 transcription through interactions with FDL2. The Plant Journal 55, 543-554. https://doi.org/10.1111/j.1365-313X.2008.03526.x DOI: https://doi.org/10.1111/j.1365-313X.2008.03526.x
Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song, Q., Zhang, R., and Gao, C. (2018). Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome biology 19, 1-9. https://doi.org/10.1186/s13059-018-1443-z DOI: https://doi.org/10.1186/s13059-018-1443-z
Li, J., Sun, Y., Du, J., Zhao, Y., and Xia, L. (2017). Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Molecular plant 10, 526-529. doi:10.1016/j.molp.2016.12.001 DOI: https://doi.org/10.1016/j.molp.2016.12.001
Li, S., and Xia, L. (2020). Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives. Abiotech 1, 58-73. https://doi.org/10.1007/s42994-019-00009-7 DOI: https://doi.org/10.1007/s42994-019-00009-7
Li, T., Huang, S., Jiang, W. Z., Wright, D., Spalding, M. H., Weeks, D. P., and Yang, B. (2011). TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic acids research 39, 359-372. https://doi.org/10.1093/nar/gkq704 DOI: https://doi.org/10.1093/nar/gkq704
Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A. V., Raguram, A., and Doman, J. L. (2020). Prime genome editing in rice and wheat. Nature biotechnology 38, 582-585. https://doi.org/10.1038/s41587-020-0455-x DOI: https://doi.org/10.1038/s41587-020-0455-x
Listgarten, J., Weinstein, M., Kleinstiver, B. P., Sousa, A. A., Joung, J. K., Crawford, J., Gao, K., Hoang, L., Elibol, M., and Doench, J. G. (2018). Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nature biomedical engineering 2, 38-47. doi.org/10.1038/s41551-017-0178-6 DOI: https://doi.org/10.1038/s41551-017-0178-6
Mallory, A. C., Reinhart, B. J., Bartel, D., Vance, V. B., and Bowman, L. H. (2002). A viral suppressor of RNA silencing differentially regulates the accumulation of short interfering RNAs and micro-RNAs in tobacco. Proceedings of the National Academy of Sciences 99, 15228-15233. https://doi.org/10.1073/pnas.232434999 DOI: https://doi.org/10.1073/pnas.232434999
Malzahn, A., Lowder, L., and Qi, Y. (2017). Plant genome editing with TALEN and CRISPR. Cell & bioscience 7, 1-18. https://doi.org/10.1186/s13578-017-0148-4 DOI: https://doi.org/10.1186/s13578-017-0148-4
Manavalan, L. P., Guttikonda, S. K., Phan Tran, L.-S., and Nguyen, H. T. (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant and Cell Physiology 50, 1260-1276. https://doi.org/10.1093/pcp/pcp082 DOI: https://doi.org/10.1093/pcp/pcp082
Mao, Y., Botella, J. R., Liu, Y., and Zhu, J.-K. (2019). Gene editing in plants: progress and challenges. National Science Review 6, 421-437. https://doi.org/10.1093/nsr/nwz005 DOI: https://doi.org/10.1093/nsr/nwz005
Matres, J. M., Hilscher, J., Datta, A., Armario-Nájera, V., Baysal, C., He, W., Huang, X., Zhu, C., Valizadeh-Kamran, R., and Trijatmiko, K. R. (2021). Genome editing in cereal crops: an overview. Transgenic research 30, 461-498. https://doi.org/10.1093/nsr/nwz005 DOI: https://doi.org/10.1007/s11248-021-00259-6
Michaels, S. D., and Amasino, R. M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell 11, 949-956. https://doi.org/10.1105/tpc.11.5.949 DOI: https://doi.org/10.1105/tpc.11.5.949
Michielse, C. B., Hooykaas, P. J., van den Hondel, C. A., and Ram, A. F. (2005). Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current genetics 48, 1-17. https://doi.org/10.1007/s00294-005-0578-0 DOI: https://doi.org/10.1007/s00294-005-0578-0
Mishra, R., and Zhao, K. (2018). Genome editing technologies and their applications in crop improvement. Plant Biotechnology Reports 12, 57-68. https://doi.org/10.1007/s11816-018-0472-0 DOI: https://doi.org/10.1007/s11816-018-0472-0
Molla, K. A., Sretenovic, S., Bansal, K. C., and Qi, Y. (2021). Precise plant genome editing using base editors and prime editors. Nature Plants 7, 1166-1187. https://doi.org/10.1038/s41477-021-00991-1 DOI: https://doi.org/10.1038/s41477-021-00991-1
Nakamichi, N., Kita, M., Niinuma, K., Ito, S., Yamashino, T., Mizoguchi, T., and Mizuno, T. (2007). Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. https://doi.org/10.1093/pcp/pcm056 DOI: https://doi.org/10.1093/pcp/pcm056
Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D., and Kamoun, S. (2017). Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific reports 7, 482. https://doi.org/10.1038/s41598-017-00578-x DOI: https://doi.org/10.1038/s41598-017-00578-x
Nelson, M. N., Berger, J. D., and Erskine, W. (2010). Flowering time control in annual legumes: prospects in a changing global climate. CABI Reviews, 1-14. https://doi.org/10.1079/PAVSNNR20105017 DOI: https://doi.org/10.1079/PAVSNNR20105017
Nowicka, B., Ciura, J., Szymańska, R., and Kruk, J. (2018). Improving photosynthesis, plant productivity and abiotic stress tolerance–current trends and future perspectives. Journal of Plant Physiology 231, 415-433. https://doi.org/10.1016/j.jplph.2018.10.022 DOI: https://doi.org/10.1016/j.jplph.2018.10.022
Oh, Y., Kim, H., and Kim, S.-G. (2021). Virus-induced plant genome editing. Current Opinion in Plant Biology 60, 101992. https://doi.org/10.1016/j.pbi.2020.101992 DOI: https://doi.org/10.1016/j.pbi.2020.101992
Opabode, J. T. (2006). Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol Rev 1, 12-20. doi:10.1016/b978-0-12-650340-1.50017-1 DOI: https://doi.org/10.1016/B978-0-12-650340-1.50017-1
Papikian, A., Liu, W., Gallego-Bartolomé, J., and Jacobsen, S. E. (2019). Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nature communications 10, 729. https://doi.org/10.1038/s41467-019-08736-7 DOI: https://doi.org/10.1038/s41467-019-08736-7
Park, J., Bae, S., and Kim, J.-S. (2015). Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31, 4014-4016. https://doi.org/10.1093/bioinformatics/btv537 DOI: https://doi.org/10.1093/bioinformatics/btv537
Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A., and Liu, D. R. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature biotechnology 31, 839-843. https://doi.org/10.1038/nbt.2673 DOI: https://doi.org/10.1038/nbt.2673
Perez-Pinera, P., Ousterout, D. G., and Gersbach, C. A. (2012). Advances in targeted genome editing. Current opinion in chemical biology 16, 268-277. https://doi.org/10.1016/j.cbpa.2012.06.007 DOI: https://doi.org/10.1016/j.cbpa.2012.06.007
Petolino, J. F. (2015). Genome editing in plants via designed zinc finger nucleases. In Vitro Cellular & Developmental Biology-Plant 51, 1-8. https://doi.org/10.1007/s11627-015-9663-3 DOI: https://doi.org/10.1007/s11627-015-9663-3
Pramanik, D., Shelake, R. M., Kim, M. J., and Kim, J.-Y. (2021). CRISPR-mediated engineering across the central dogma in plant biology for basic research and crop improvement. Molecular Plant 14, 127-150. https://doi.org/10.1016/j.molp.2020.11.002 DOI: https://doi.org/10.1016/j.molp.2020.11.002
Puchta, H. (2017). Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Current opinion in plant biology 36, 1-8. https://doi.org/10.1016/j.pbi.2016.11.011 DOI: https://doi.org/10.1016/j.pbi.2016.11.011
Puchta, H., and Fauser, F. (2013). Gene targeting in plants: 25 years later. International Journal of Developmental Biology 57, 629-637. https://doi.org/10.1387/ijdb.130194hp DOI: https://doi.org/10.1387/ijdb.130194hp
Putterill, J., Laurie, R., and Macknight, R. (2004). It's time to flower: the genetic control of flowering time. Bioessays 26, 363-373. https://doi.org/10.1002/bies.20021 DOI: https://doi.org/10.1002/bies.20021
Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857. doi:10.1016/0092-8674(95)90288-0 DOI: https://doi.org/10.1016/0092-8674(95)90288-0
Qaim, M. (2020). Role of new plant breeding technologies for food security and sustainable agricultural development. Applied Economic Perspectives and Policy 42, 129-150. https://doi.org/10.1002/aepp.13044 DOI: https://doi.org/10.1002/aepp.13044
Raman, H., Raman, R., Qiu, Y., Yadav, A. S., Sureshkumar, S., Borg, L., Rohan, M., Wheeler, D., Owen, O., and Menz, I. (2019). GWAS hints at pleiotropic roles for FLOWERING LOCUS T in flowering time and yield-related traits in canola. BMC genomics 20, 1-18. https://doi.org/10.1186/s12864-019-5964-y DOI: https://doi.org/10.1186/s12864-019-5964-y
Riedinger, V., Renner, M., Rundlöf, M., Steffan-Dewenter, I., and Holzschuh, A. (2014). Early mass-flowering crops mitigate pollinator dilution in late-flowering crops. Landscape Ecology 29, 425-435. https://doi.org/10.1007/s10980-013-9973-y DOI: https://doi.org/10.1007/s10980-013-9973-y
Rouse, D. T., Sheldon, C. C., Bagnall, D. J., Peacock, W. J., and Dennis, E. S. (2002). FLC, a repressor of flowering, is regulated by genes in different inductive pathways. The Plant Journal 29, 183-191. https://doi.org/10.1046/j.0960-7412.2001.01210.x DOI: https://doi.org/10.1046/j.0960-7412.2001.01210.x
Scheben, A., Wolter, F., Batley, J., Puchta, H., and Edwards, D. (2017). Towards CRISPR/Cas crops–bringing together genomics and genome editing. New Phytologist 216, 682-698. https://doi.org/10.1111/nph.14702 DOI: https://doi.org/10.1111/nph.14702
Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., De Groot, S., Soole, K., and Langridge, P. (2017). Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Frontiers in plant science 8, 1950. https://doi.org/10.3389/fpls.2017.01950 DOI: https://doi.org/10.3389/fpls.2017.01950
She, W., Grimanelli, D., Rutowicz, K., Whitehead, M. W., Puzio, M., Kotliński, M., Jerzmanowski, A., and Baroux, C. (2013). Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140, 4008-4019. https://doi.org/10.1242/dev.095034 DOI: https://doi.org/10.1242/dev.095034
Shukla, V. K., Doyon, Y., Miller, J. C., DeKelver, R. C., Moehle, E. A., Worden, S. E., Mitchell, J. C., Arnold, N. L., Gopalan, S., and Meng, X. (2009). Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437-441. https://doi.org/10.1038/nature07992 DOI: https://doi.org/10.1038/nature07992
Sprink, T., Eriksson, D., Schiemann, J., and Hartung, F. (2016). Regulatory hurdles for genome editing: process-vs. product-based approaches in different regulatory contexts. Plant cell reports 35, 1493-1506. https://doi.org/10.1007/s00299-016-1990-2 DOI: https://doi.org/10.1007/s00299-016-1990-2
Sun, T.-p. (2010). Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant physiology 154, 567-570. https://doi.org/10.1104/pp.110.161554 DOI: https://doi.org/10.1104/pp.110.161554
Tang, X., Lowder, L. G., Zhang, T., Malzahn, A. A., Zheng, X., Voytas, D. F., Zhong, Z., Chen, Y., Ren, Q., and Li, Q. (2017). A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature plants 3, 1-5. https://doi.org/10.1038/nplants.2017.18 DOI: https://doi.org/10.1038/nplants.2017.18
Thudi, M., Palakurthi, R., Schnable, J. C., Chitikineni, A., Dreisigacker, S., Mace, E., Srivastava, R. K., Satyavathi, C. T., Odeny, D., and Tiwari, V. K. (2021). Genomic resources in plant breeding for sustainable agriculture. Journal of Plant Physiology 257, 153351. https://doi.org/10.1016/j.jplph.2020.153351 DOI: https://doi.org/10.1016/j.jplph.2020.153351
Townsend, J. A., Wright, D. A., Winfrey, R. J., Fu, F., Maeder, M. L., Joung, J. K., and Voytas, D. F. (2009). High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459, 442-445. https://doi.org/10.1038/nature07845 DOI: https://doi.org/10.1038/nature07845
Tsai, C.-Y., Hsieh, S.-C., Liu, C.-W., Lu, C.-H., Liao, H.-T., Chen, M.-H., Li, K.-J., Wu, C.-H., Shen, C.-Y., and Kuo, Y.-M. (2021). The expression of non-coding RNAs and their target molecules in rheumatoid arthritis: a molecular basis for rheumatoid pathogenesis and its potential clinical applications. International journal of molecular sciences 22, 5689. https://doi.org/10.3390/ijms22115689 DOI: https://doi.org/10.3390/ijms22115689
Tsai, S. Q., Zheng, Z., Nguyen, N. T., Liebers, M., Topkar, V. V., Thapar, V., Wyvekens, N., Khayter, C., Iafrate, A. J., and Le, L. P. (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature biotechnology 33, 187-197. https://doi.org/10.1038/nbt.3117 DOI: https://doi.org/10.1038/nbt.3117
Turck, F., Fornara, F., and Coupland, G. (2008). Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573-594. doi.org/10.1146/annurev.arplant.59.032607.092755 DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092755
Turck, F., Roudier, F., Farrona, S., Martin-Magniette, M.-L., Guillaume, E., Buisine, N., Gagnot, S., Martienssen, R. A., Coupland, G., and Colot, V. (2007). Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS genetics 3, e86. https://doi.org/10.1371/journal.pgen.0030086 DOI: https://doi.org/10.1371/journal.pgen.0030086
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., and Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics 11, 636-646. https://doi.org/10.1038/nrg2842 DOI: https://doi.org/10.1038/nrg2842
Voytas, D. F., and Gao, C. (2014). Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS biology 12, e1001877. https://doi.org/10.1371/journal.pbio.1001877 DOI: https://doi.org/10.1371/journal.pbio.1001877
Wang, J.-W. (2014). Regulation of flowering time by the miR156-mediated age pathway. Journal of experimental botany 65, 4723-4730. https://doi.org/10.1093/jxb/eru246 DOI: https://doi.org/10.1093/jxb/eru246
Weinthal, D., Tovkach, A., Zeevi, V., and Tzfira, T. (2010). Genome editing in plant cells by zinc finger nucleases. Trends in plant science 15, 308-321. DOI:https://doi.org/10.1016/j.tplants.2010.03.001 DOI: https://doi.org/10.1016/j.tplants.2010.03.001
Wigge, P. A., Kim, M. C., Jaeger, K. E., Busch, W., Schmid, M., Lohmann, J. U., and Weigel, D. (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056-1059. DOI:10.1126/science.1114358 DOI: https://doi.org/10.1126/science.1114358
Wiles, M. V., Qin, W., Cheng, A. W., and Wang, H. (2015). CRISPR–Cas9-mediated genome editing and guide RNA design. Mammalian Genome 26, 501-510. https://doi.org/10.1007/s00335-015-9565-z DOI: https://doi.org/10.1007/s00335-015-9565-z
Wu, F., and Hanzawa, Y. (2018). A simple method for isolation of soybean protoplasts and application to transient gene expression analyses. JoVE (Journal of Visualized Experiments), e57258. doi: 10.3791/57258 DOI: https://doi.org/10.3791/57258-v
Wu, Z., Fang, X., Zhu, D., and Dean, C. (2020). Autonomous pathway: FLOWERING LOCUS C repression through an antisense-mediated chromatin-silencing mechanism. Plant physiology 182, 27-37. https://doi.org/10.1104/pp.19.01009 DOI: https://doi.org/10.1104/pp.19.01009
Yamaguchi, A., Kobayashi, Y., Goto, K., Abe, M., and Araki, T. (2005). TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant and Cell Physiology 46, 1175-1189. https://doi.org/10.1093/pcp/pci151 DOI: https://doi.org/10.1093/pcp/pci151
Yang, Y., Sang, Z., Du, Q., Guo, Z., Li, Z., Kong, X., Xu, Y., and Zou, C. (2021). Flowering time regulation model revisited by pooled sequencing of mass selection populations. Plant Science 304, 110797. https://doi.org/10.1016/j.plantsci.2020.110797 DOI: https://doi.org/10.1016/j.plantsci.2020.110797
Yin, K., Gao, C., and Qiu, J.-L. (2017). Progress and prospects in plant genome editing. Nature plants 3, 1-6. DOI: https://doi.org/10.1038/nplants.2017.107
Yu, S., Galvão, V. C., Zhang, Y.-C., Horrer, D., Zhang, T.-Q., Hao, Y.-H., Feng, Y.-Q., Wang, S., Schmid, M., and Wang, J.-W. (2012). Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING–LIKE transcription factors. The Plant Cell 24, 3320-3332. https://doi.org/10.1038/nplants.2017.107 DOI: https://doi.org/10.1105/tpc.112.101014
Zaidi, S. S.-e.-A., and Mansoor, S. (2017). Viral vectors for plant genome engineering. Frontiers in plant science 8, 539. https://doi.org/10.3389/fpls.2017.00539 DOI: https://doi.org/10.3389/fpls.2017.00539
Zhan, X., Lu, Y., Zhu, J. K., and Botella, J. R. (2021). Genome editing for plant research and crop improvement. Journal of Integrative Plant Biology 63, 3-33. https://doi.org/10.1111/jipb.13063 DOI: https://doi.org/10.1111/jipb.13063
Zhang, J., Song, Q., Cregan, P. B., Nelson, R. L., Wang, X., Wu, J., and Jiang, G.-L. (2015). Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC genomics 16, 1-11. https://doi.org/10.1186/s12864-015-1441-4 DOI: https://doi.org/10.1186/s12864-015-1441-4
Zhang, Y., Li, D., Zhang, D., Zhao, X., Cao, X., Dong, L., Liu, J., Chen, K., Zhang, H., and Gao, C. (2018). Analysis of the functions of Ta GW 2 homoeologs in wheat grain weight and protein content traits. The Plant Journal 94, 857-866. https://doi.org/10.1111/tpj.13903 DOI: https://doi.org/10.1111/tpj.13903
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 U IRFAN, MZ HAIDER, M SHAFIQ, A SAMI, Q ALI
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.