NGS-DRIVEN MUTATION PROFILING IN BREAST CANCER: BRIDGING THE GAP BETWEEN REAL-WORLD DATA AND PERSONALIZED THERAPY

Authors

  • S MALIK University College of Medicine and Dentistry (UCMD), The University of Lahore, Lahore Pakistan
  • A MALIK School of Pain and Regenerative Medicine (SPRM), The University of Lahore-Pakistan/Faculty of Health Sciences, Equator University of Science and Technology, (EQUSaT), Masaka, Uganda
  • J ISLAM Department of Biological Sciences, Grand Asian University, Sialkot-Pakistan
  • A ZAHID School of Medical Lab technology (MLT), Minhaj University Lahore-Pakistan
  • J IQBAL School of pharmacy, Minhaj University Lahore-Pakistan
  • M MARVI Department of Pharmacy, University of Balochistan, Balochistan-Pakistan
  • Q ALI Department of Plant Breeding and Genetics, Faculty of Agriculture, The University of Punjab, Lahore, Pakistan
  • A FATIMA School of Pain and Regenerative Medicine (SPRM), The University of Lahore-Pakistan

DOI:

https://doi.org/10.64013/bbasr.v2025i1.104

Keywords:

Next-generation sequencing, breast cancer, mutation profiling, personalized therapy, real-world data, precision medicine, clinical practice

Abstract

Next-generation sequencing (NGS) has emerged as a revolutionary weapon in oncology, particularly in breast cancer, enabling precise mutant profiles and the evolution of individualized treatment systems. NGS-based mutant profiling in breast cancer, contributing to the development of a better understanding of familial variations and their results in clinical practice. The NGS makes it possible to call multiple genetic variations, including the well-known BRCA1/2 gene, as well as a fresh variation that may influence the curative response. Despite its constancy, there are still several impediments to NGS integration into routine clinical practice, including data interpretation, cost, ease of use, and insufficient standard protocols. It is necessary to validate NGS results and translate them into capable, personalized treatment, hands-on statistics, and clinical trials. Reverence must also be accorded to the fair results of family testing, in particular about incidental consequences. To ensure that all patients benefit from the personalized therapy, the future of NGS in breast cancer lies in exultant these problems and improving productivity. NGS is capable of redefining breast cancer medicines, providing a powerful, target therapy based on human characteristics.

Downloads

Download data is not yet available.

References

Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., ... & Winchester, D. P. (2017). The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population‐based to a more “personalized” approach to cancer staging. CA: a cancer journal for clinicians, 67(2), 93-99. DOI: https://doi.org/10.3322/caac.21388

Bacher, U., Shumilov, E., Flach, J., Porret, N., Joncourt, R., Wiedemann, G., ... & Pabst, T. (2018). Challenges in the introduction of next-generation sequencing (NGS) for diagnostics of myeloid malignancies into clinical routine use. Blood cancer journal, 8(11), 113. https://doi.org/10.1038/s41408-018-0148-6 DOI: https://doi.org/10.1038/s41408-018-0148-6

Barroso-Sousa, R., Jain, E., Cohen, O., Kim, D., Buendia-Buendia, J., Winer, E., ... & Wagle, N. (2020). Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Annals of Oncology, 31(3), 387-394. DOI: https://doi.org/10.1016/j.annonc.2019.11.010

Bidard, F. C., Kaklamani, V. G., Neven, P., Streich, G., Montero, A. J., Forget, F., ... & Bardia, A. (2022). Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer: results from the randomized phase III EMERALD trial. Journal of Clinical Oncology, 40(28), 3246-3256. DOI: https://doi.org/10.1200/JCO.22.00338

Buermans, H. P., & den Dunnen, J. T. (2014). Next generation sequencing technology: Advances and applications. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842(10), 1932–1941. https://doi.org/10.1016/j.bbadis.2014.06.015. DOI: https://doi.org/10.1016/j.bbadis.2014.06.015

Calistri, A., & Palù, G. (2015). Editorial commentary: Unbiased next-generation sequencing and new pathogen discovery: Undeniable advantages and still-existing drawbacks. Clinical Infectious Diseases, 60(6), 889-891. https://doi.org/10.1093/cid/ciu913 DOI: https://doi.org/10.1093/cid/ciu913

Centers for Medicare & Medicaid Services. (2018). Decision memo for next generation sequencing (NGS) for Medicare beneficiaries with advanced cancer. https://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?NCAId=290

Consortium, A. P. G. (2017). AACR Project GENIE: Powering precision medicine through an international consortium. Cancer Discovery, 7(8), 818-831. https://doi.org/10.1158/2159-8290.CD-17-0151 DOI: https://doi.org/10.1158/2159-8290.CD-17-0151

D'Argenio, V., Esposito, M. V., Telese, A., Precone, V., Starnone, F., Nunziato, M., ... & Salvatore, F. (2015). The molecular analysis of BRCA1 and BRCA2: Next-generation sequencing supersedes conventional approaches. Clinica Chimica Acta, 446, 221-225. DOI: https://doi.org/10.1016/j.cca.2015.03.045

Di Resta, C., Galbiati, S., Carrera, P., & Ferrari, M. (2018). Next-generation sequencing approach for the diagnosis of human diseases: Open challenges and new opportunities. EJIFCC, 29, 4-14.

Drilon, A., Nagasubramanian, R., Blake, J. F., Ku, N., Tuch, B. B., Ebata, K., ... & Hyman, D. M. (2017). A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion–positive solid tumors. Cancer discovery, 7(9), 963-972. https://doi.org/10.1158/2159-8290.CD-17-0507 DOI: https://doi.org/10.1158/2159-8290.CD-17-0507

Finn, R. S., Crown, J. P., Lang, I., Boer, K., Bondarenko, I. M., Kulyk, S. O., ... & Slamon, D. J. (2015). The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. The lancet oncology, 16(1), 25-35. https://doi.org/10.1016/S1470-2045(14)71159-3 DOI: https://doi.org/10.1016/S1470-2045(14)71159-3

Gagan, J., & Van Allen, E. M. (2015). Next-generation sequencing to guide cancer therapy. Genome Medicine, 7, 80. https://doi.org/10.1186/s13073-015-0203-x DOI: https://doi.org/10.1186/s13073-015-0203-x

Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians. 2022; 72:524-41. https://doi.org/10.3322/caac.21754 DOI: https://doi.org/10.3322/caac.21754

Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333-351. https://doi.org/10.1038/nrg.2016.49 DOI: https://doi.org/10.1038/nrg.2016.49

Hess, J. F., Kohl, T. A., Kotrová, M., Rönsch, K., Paprotka, T., Mohr, V., ... & Paust, N. (2020). Library preparation for next generation sequencing: A review of automation strategies. Biotechnology Advances, 41, 107537. https://doi.org/10.1016/j.biotechadv.2020.107537 DOI: https://doi.org/10.1016/j.biotechadv.2020.107537

Horgan, D., Van den Bulcke, M., Malapelle, U., Troncone, G., Normanno, N., Capoluongo, E. D., Prelaj, A., Rizzari, C., Trapani, D., Singh, J., Kozaric, M., Longshore, J., Ottaviano, M., Boccia, S., Pravettoni, G., Cattaneo, I., Malats, N., Buettner, R., Lekadir, K., De Lorenzo, F., Hofman, P., & De Maria, R. (2024). Tackling the implementation gap for the uptake of NGS and advanced molecular diagnostics into healthcare systems. Heliyon, 10(1), e23914. https://doi.org/10.1016/j.heliyon.2023.e23914 DOI: https://doi.org/10.1016/j.heliyon.2023.e23914

Kanzi, A. M., San, J. E., Chimukangara, B., Wilkinson, E., Fish, M., Ramsuran, V., et al. (2020). Next generation sequencing and bioinformatics analysis of family genetic inheritance. Frontiers in Genetics, 11, 544162. https://doi.org/10.3389/fgene.2020.544162 DOI: https://doi.org/10.3389/fgene.2020.544162

Karlovich, C. A., & Williams, P. M. (2019). Clinical applications of next-generation sequencing in precision oncology. Cancer Journal, 25, 264-271. DOI: https://doi.org/10.1097/PPO.0000000000000385

Kaur, H., Mao, S., Shah, S., Gorski, D. H., Krawetz, S. A., Sloane, B. F., & Mattingly, R. R. (2013). Next-generation sequencing: A powerful tool for the discovery of molecular markers in breast ductal carcinoma in situ. Expert Review of Molecular Diagnostics, 13(2), 151-165. https://doi.org/10.1586/erm.13.4 DOI: https://doi.org/10.1586/erm.13.4

Kim, K., Seong, M. W., Chung, W. H., Park, S. S., Leem, S., Park, W., ... & Kim, N. (2015). Effect of next-generation exome sequencing depth for discovery of diagnostic variants. Genomics & Informatics, 13(2), 31–39. https://doi.org/10.5808/GI.2015.13.2.31 DOI: https://doi.org/10.5808/GI.2015.13.2.31

Krzyszczyk, P., Acevedo, A., Davidoff, E. J., Timmins, L. M., Marrero-Berrios, I., Patel, M., ... & Yarmush, M. L. (2018). The growing role of precision and personalized medicine for cancer treatment. Technology (Singapore World Science), 6, 79-100. https://doi.org/10.1142/S2339547818300020 DOI: https://doi.org/10.1142/S2339547818300020

Kwon, D., Kim, B., Shin, H.C., Kim, E.J., Ha, S.Y., Jang, K.T., Kim, S.T., Lee, J., Kang, W.K., Park, J.O., Kim, K.M., (2019). Cancer panel assay for precision oncology clinic: Results from a 1-year study. Translational Oncology, 12, 1488-1495. DOI: https://doi.org/10.1016/j.tranon.2019.07.017

Levy, S. E., & Myers, R. M. (2016). Advancements in next-generation sequencing. Annual Review of Genomics and Human Genetics, 17, 95–115. https://doi.org/10.1146/annurev-genom-083115-022413 DOI: https://doi.org/10.1146/annurev-genom-083115-022413

Marabelle, A., Fakih, M., Lopez, J., Shah, M., Shapira-Frommer, R., Nakagawa, K., Chung, H.C., Kindler, H.L., Lopez-Martin, J.A., Miller, W.H., Italiano, A. (2020). Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020; 21:1353-65. https://doi.org/10.1016/S1470-2045(20)30445-9. DOI: https://doi.org/10.1016/S1470-2045(20)30445-9

Mardis, E. R. (2019). The impact of next-generation sequencing on cancer genomics: From discovery to clinic. Cold Spring Harbor Perspectives in Medicine, 9, a036269. https://doi.org/10.1101/cshperspect.a036269 DOI: https://doi.org/10.1101/cshperspect.a036269

Martinez-Martin, N., & Magnus, D. (2019). Privacy and ethical challenges in next-generation sequencing. Expert Review of Precision Medicine and Drug Development, 4(2), 95-104. https://doi.org/10.1080/23808993.2019.1599685 DOI: https://doi.org/10.1080/23808993.2019.1599685

Massard, C., Michiels, S., Ferté, C., Le Deley, M.C., Lacroix, L., Hollebecque, A., Verlingue, L., Ileana, E., Rosellini, S., Ammari, S., Ngo-Camus, M. (2017). High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: Results of the MOSCATO 01 trial. Cancer Discovery, 7, 586-595. https://doi.org/10.1158/2159-8290.CD-16-1396 DOI: https://doi.org/10.1158/2159-8290.CD-16-1396

McNulty, S. N., Parikh, B. A., Duncavage, E. J., Heusel, J. W., & Pfeifer, J. D. (2019). Optimization of population frequency cutoffs for filtering common germline polymorphisms from tumor-only next-generation sequencing data. The Journal of Molecular Diagnostics, 21(5), 903-912. https://doi.org/10.1016/j.jmoldx.2019.05.005 DOI: https://doi.org/10.1016/j.jmoldx.2019.05.005

Modi, S., Saura, C., Yamashita, T., Park, Y. H., Kim, S. B., Tamura, K., ... & Krop, I. (2020). Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. New England Journal of Medicine, 382(7), 610-621. https://doi.org/10.1056/NEJMoa1914510 DOI: https://doi.org/10.1056/NEJMoa1914510

Moorcraft, S. Y., Gonzalez, D., & Walker, B. A. (2015). Understanding next generation sequencing in oncology: A guide for oncologists. Critical Reviews in Oncology/Hematology, 96(3), 463-474. https://doi.org/10.1016/j.critrevonc.2015.06.007 DOI: https://doi.org/10.1016/j.critrevonc.2015.06.007

Morash, M., Mitchell, H., Beltran, H., Elemento, O., & Pathak, J. (2018). The role of next-generation sequencing in precision medicine: A review of outcomes in oncology. Journal of Personalized Medicine, 8, 30. https://doi.org/10.3390/jpm8030030 DOI: https://doi.org/10.3390/jpm8030030

Morganti, S., Tarantino, P., Ferraro, E., D’Amico, P., Viale, G., Trapani, D., ... & Curigliano, G. (2019). Complexity of genome sequencing and reporting: Next generation sequencing (NGS) technologies and implementation of precision medicine in real life. Critical reviews in oncology/hematology, 133, 171-182. https://doi.org/10.1016/j.critrevonc.2018.11.008 DOI: https://doi.org/10.1016/j.critrevonc.2018.11.008

Moscow, J. A., Fojo, T., & Schilsky, R. L. (2018). The evidence framework for precision cancer medicine. Nature Reviews Clinical Oncology, 15(3), 183-192. https://doi.org/10.1038/nrclinonc.2017.186 DOI: https://doi.org/10.1038/nrclinonc.2017.186

Mosele, F., Remon, J., Mateo, J., Westphalen, C. B., Barlesi, F., Lolkema, M. P., ... & André, F. (2020). Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Annals of Oncology, 31(11), 1491-1505. https://doi.org/10.1016/j.annonc.2020.07.014. DOI: https://doi.org/10.1016/j.annonc.2020.07.014

Park, C., Yoon, K. A., Kim, J., Park, I. H., Park, S. J., Kim, M. K., et al. (2019). Integrative molecular profiling identifies a novel cluster of estrogen receptor-positive breast cancer in very young women. Cancer Science, 110, 1760-1770. https://doi.org/10.1111/cas.13982 DOI: https://doi.org/10.1111/cas.13982

Pereira, B., Chin, S. F., Rueda, O. M., Vollan, H. K. M., Provenzano, E., Bardwell, H. A., ... & Caldas, C. (2016). The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nature communications, 7(1), 11479. https://doi.org/10.1038/ncomms11479 DOI: https://doi.org/10.1038/ncomms11479

Pereira, R., Oliveira, J., & Sousa, M. (2020). Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. Journal of Clinical Medicine, 9(1), 132. https://doi.org/10.3390/jcm9010132 DOI: https://doi.org/10.3390/jcm9010132

Piccart, M., van't Veer, L. J., Poncet, C., Cardozo, J. M. L., Delaloge, S., Pierga, J. Y., ... & Rutgers, E. J. (2021). 70-gene signature as an aid for treatment decisions in early breast cancer: updated results of the phase 3 randomised MINDACT trial with an exploratory analysis by age. The Lancet Oncology, 22(4), 476-488. https://doi.org/10.1016/S1470-2045(21)00007-3 DOI: https://doi.org/10.1016/S1470-2045(21)00007-3

Qin, D. (2019). Next-generation sequencing and its clinical application. Cancer Biology & Medicine, 16(1), 4-10. https://doi.org/10.20892/j.issn.2095-3941.2018.0055 DOI: https://doi.org/10.20892/j.issn.2095-3941.2018.0055

Radovich, M., Kiel, P.J., Nance, S.M., Niland, E.E., Parsley, M.E., Ferguson, M.E., Jiang, G., Ammakkanavar, N.R., Einhorn, L.H., Cheng, L., Nassiri, M. (2016). Clinical benefit of a precision medicine-based approach for guiding treatment of refractory cancers. Oncotarget, 7(36), 56491-56500. https://doi.org/10.18632/oncotarget.10606 DOI: https://doi.org/10.18632/oncotarget.10606

Rajkumar, T., Meenakumari, B., Mani, S., Sridevi, V., & Sundersingh, S. (2015). Targeted resequencing of 30 genes improves the detection of deleterious mutations in South Indian women with breast and/or ovarian cancers. Asian Pacific Journal of Cancer Prevention, 16(13), 5211-5217. DOI: https://doi.org/10.7314/APJCP.2015.16.13.5211

Schmid, P., Adams, S., Rugo, H. S., Schneeweiss, A., Barrios, C. H., Iwata, H., ... & Emens, L. A. (2018). Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. New England journal of medicine, 379(22), 2108-2121. https://doi.org/10.1056/NEJMoa1809615 DOI: https://doi.org/10.1056/NEJMoa1809615

Shin, H. C., Lee, H. B., Yoo, T. K., Lee, E. S., Kim, R. N., Park, B., ... & Han, W. (2020). Detection of germline mutations in breast cancer patients with clinical features of hereditary cancer syndrome using a multi-gene panel test. Cancer Research and Treatment: Official Journal of Korean Cancer Association, 52(3), 697-713. https://doi.org/10.4143/crt.2019.559 DOI: https://doi.org/10.4143/crt.2019.559

Shin, S. H., Bode, A. M., & Dong, Z. (2017). Precision medicine: The foundation of future cancer therapeutics. NPJ Precision Oncology, 1, 12. https://doi.org/10.1038/s41698-017-0016-z DOI: https://doi.org/10.1038/s41698-017-0016-z

Sparano, J. A., Gray, R. J., Makower, D. F., Pritchard, K. I., Albain, K. S., Hayes, D. F., ... & Sledge Jr, G. W. (2018). Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. New England Journal of Medicine, 379(2), 111-121. https://doi.org/10.1056/NEJMoa1804710. DOI: https://doi.org/10.1056/NEJMoa1804710

Suh, K. J., Kim, S. H., Kim, Y. J., Shin, H., Kang, E., Kim, E. K., ... & Kim, J. H. (2022). Clinical application of next-generation sequencing in patients with breast cancer: real-world data. Journal of Breast Cancer, 25(5), 366. https://doi.org/10.4048/jbc.2022.25.e30. DOI: https://doi.org/10.4048/jbc.2022.25.e30

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249. https://doi.org/10.3322/caac.21660 DOI: https://doi.org/10.3322/caac.21660

Toy, W., Shen, Y., Won, H., Green, B., Sakr, R. A., Will, M., ... & Chandarlapaty, S. (2013). ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nature genetics, 45(12), 1439-1445. https://doi.org/10.1038/ng.2822 DOI: https://doi.org/10.1038/ng.2822

Tsimberidou, A. M., Iskander, N. G., Hong, D. S., Wheler, J. J., Falchook, G. S., Fu, S., ... & Kurzrock, R. (2012). Personalized medicine in a phase I clinical trials program: the MD Anderson Cancer Center initiative. Clinical Cancer Research, 18(22), 6373-6383. https://doi.org/10.1158/1078-0432.CCR-12-1627 DOI: https://doi.org/10.1158/1078-0432.CCR-12-1627

Wang T, Xu Y, Sheng S, Yuan H, Ouyang T, Li J, et al. HER2 somatic mutations are associated with poor survival in HER2-negative breast cancers. Cancer Science, 2017; 108:671-7. https://doi.org/10.1111/cas.13182 DOI: https://doi.org/10.1111/cas.13182

West, H. J. (2016). No solid evidence, only hollow argument for universal tumor sequencing: Show me the data. JAMA Oncology, 2(6), 717-718. https://doi.org/10.1001/jamaoncol.2016.0075 DOI: https://doi.org/10.1001/jamaoncol.2016.0075

Winer, E. P., Lipatov, O., Im, S. A., Goncalves, A., Muñoz-Couselo, E., Lee, K. S., ... & Cortes, J. (2020). Association of tumor mutational burden (TMB) and clinical outcomes with pembrolizumab (pembro) versus chemotherapy (chemo) in patients with metastatic triple-negative breast cancer (mTNBC) from KEYNOTE-119. Journal of Clinical Oncology. 38(15 Suppl):1013. DOI: https://doi.org/10.1200/JCO.2020.38.15_suppl.1013

Zheng, Z. Y., Anurag, M., Lei, J. T., Cao, J., Singh, P., Peng, J., ... & Chang, E. C. (2020). Neurofibromin is an estrogen receptor-α transcriptional co-repressor in breast cancer. Cancer Cell. 2020; 37:387-402. https://doi.org/10.1016/j.ccell.2020.02.003 DOI: https://doi.org/10.1016/j.ccell.2020.02.003

Downloads

Published

2025-07-30

How to Cite

MALIK, S., MALIK, A., ISLAM, J., ZAHID, A., IQBAL, J., MARVI, M., ALI, Q., & FATIMA, A. (2025). NGS-DRIVEN MUTATION PROFILING IN BREAST CANCER: BRIDGING THE GAP BETWEEN REAL-WORLD DATA AND PERSONALIZED THERAPY. Bulletin of Biological and Allied Sciences Research, 2025(1), 104. https://doi.org/10.64013/bbasr.v2025i1.104

Most read articles by the same author(s)

1 2 > >>