SYNERGIZING FOOD SAFETY, QUALITY AND GENETIC IMPROVEMENT: THE INTERSECTION OF FOOD MICROBIOLOGY AND PROCESSING
DOI:
https://doi.org/10.54112/bbasr.v2023i1.44Keywords:
Salmonella, food processing techniques, Listeria monocytogenes, food safety, microbiologyAbstract
The fusion of food microbiology and processing has given rise, to a field that encompasses food safety, quality and genetic enhancement. This convergence plays a role in ensuring the safety, nutritional value and overall superiority of the food we consume. By integrating knowledge of microbiology with genetic improvement strategies significant progress has been made in preservation methods and food processing techniques. Innovative processing technologies have proven effective in mitigating the presence of microorganisms and extending the shelf life of food products thereby enhancing food safety. Techniques such as high pressure processing pulsed fields and ultraviolet light have gained recognition for their ability to regulate microbial populations and maintain the nutritional integrity of food. This comprehensive approach to food safety combines principles from both microbiology and processing to address challenges and safeguard health. Concurrently strategies in the realm of food microbiology and processing strive to enhance the quality and nutritional value of our meals. Probiotics, which are microorganisms that offer health benefits are employed to promote wellbeing, bolster function and overall vitality. Through engineering probiotics can be customized to target health advantages. The presence of antibiotic microorganisms like Listeria monocytogenes and Salmonella poses a risk, to food safety. To tackle this problem various approaches are utilized, such as enhancement, focused antimicrobial techniques and rigorous compliance, with safety protocols. The utilization of rapid microbiological methods, such as PCR and metagenomics, enables improved monitoring and detection of evolving microorganisms, thereby enhancing food safety. DNA-based techniques are used to combat microbial food fraud, authenticate products, detect adulteration, and trace the origins of ingredients, all of which contribute to consumer trust and the integrity of the food supply chain.
Downloads
References
Abdelazez, A., Melak, S., Abdelmotaal, H., Alshehry, G., Al-Jumayi, H., Algarni, E., and Meng, X.-C. (2023). Potential antimicrobial activity of camel milk as a traditional functional food against foodborne pathogens in vivo and in vitro. Food Science and Technology International, 10820132221146322 https://doi.org/10.1177/10820132221146322. DOI: https://doi.org/10.1177/10820132221146322
Adugna, C., and Sivalingam, K. M. (2022). Prevalence of Multiple Drug-Resistant Bacteria in the Main Campus Wastewater Treatment Plant of Wolaita Sodo University, Southern Ethiopia. International Journal of Microbiology 2022 https://doi.org/10.1155/2022/1781518. DOI: https://doi.org/10.1155/2022/1781518
Akaçin, İ., Ersoy, Ş., Doluca, O., and Güngörmüşler, M. (2022). Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics. Microbiological Research, 127154 https://doi.org/10.1016/j.micres.2022.127154. DOI: https://doi.org/10.1016/j.micres.2022.127154
Akram, N., Saeed, F., Afzaal, M., Shah, Y. A., Qamar, A., Faisal, Z., Ghani, S., Ateeq, H., Akhtar, M. N., and Tufail, T. (2023). Gut microbiota and synbiotic foods: Unveiling the relationship in COVID‐19 perspective. Food Science & Nutrition https://doi.org/10.1002/fsn3.3162. DOI: https://doi.org/10.1002/fsn3.3162
Aleman, R. S., Moncada, M., and Aryana, K. J. (2023). Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 28, 619 https://doi.org/10.3390/molecules28020619. DOI: https://doi.org/10.3390/molecules28020619
Anumudu, C., Hart, A., Miri, T., and Onyeaka, H. (2021). Recent advances in the application of the antimicrobial peptide nisin in the inactivation of spore-forming bacteria in foods. Molecules 26, 5552 https://doi.org/10.1002/fsn3.3162. DOI: https://doi.org/10.3390/molecules26185552
Ashrafudoulla, M., Ulrich, M. S., Toushik, S. H., Nahar, S., Roy, P. K., Mizan, F. R., Park, S. H., and Ha, S.-D. (2023). Challenges and opportunities of non-conventional technologies concerning food safety. World's Poultry Science Journal, 1-24 https://doi.org/10.1080/00439339.2023.2163044. DOI: https://doi.org/10.1080/00439339.2023.2163044
Bajpai, V. K., Kamle, M., Shukla, S., Mahato, D. K., Chandra, P., Hwang, S. K., Kumar, P., Huh, Y. S., and Han, Y.-K. (2018). Prospects of using nanotechnology for food preservation, safety, and security. Journal of food and drug analysis 26, 1201-1214 https://doi.org/10.1016/j.jfda.2018.06.011. DOI: https://doi.org/10.1016/j.jfda.2018.06.011
Bamigbade, G. B., Subhash, A. J., Kamal-Eldin, A., Nyström, L., and Ayyash, M. (2022). An Updated Review on Prebiotics: Insights on Potentials of Food Seeds Waste as Source of Potential Prebiotics. Molecules 27, 5947 ttps://doi.org/10.3390/molecules27185947. DOI: https://doi.org/10.3390/molecules27185947
Barrere, V., Everstine, K., Théolier, J., and Godefroy, S. (2020). Food fraud vulnerability assessment: Towards a global consensus on procedures to manage and mitigate food fraud. Trends in Food Science & Technology 100, 131-137 https://doi.org/10.1016/j.tifs.2020.04.002. DOI: https://doi.org/10.1016/j.tifs.2020.04.002
Beigmohammadi, F., Solgi, E., Lajayer, B. A., and van Hullebusch, E. D. (2023). Role and importance of microorganisms in plant nutrition and remediation of potentially toxic elements contaminated soils. In "Sustainable Plant Nutrition", pp. 179-208. Elsevierhttps://doi.org/10.1016/B978-0-443-18675-2.00012-2. DOI: https://doi.org/10.1016/B978-0-443-18675-2.00012-2
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.-C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., and Corral, G. H. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 1-22 https://doi.org/10.1186/s40168-020-00875-0. DOI: https://doi.org/10.1186/s40168-020-00875-0
Bhaskaran, S., and Saikumar, C. (2022). A Review of Next Generation Sequencing Methods and its Applications in Laboratory Diagnosis. J Pure Appl Microbiol 16, 825-833 https://doi.org/10.1016/j.yamp.2019.07.007. DOI: https://doi.org/10.22207/JPAM.16.2.45
Bloomfield, S. J., Zomer, A. L., O'Grady, J., Kay, G. L., Wain, J., Janecko, N., Palau, R., and Mather, A. E. (2023). Determination and quantification of microbial communities and antimicrobial resistance on food through host DNA-depleted metagenomics. Food Microbiology 110, 104162 https://doi.org/10.1128/aem.01087-22. DOI: https://doi.org/10.1016/j.fm.2022.104162
Brooks, C., Parr, L., Smith, J. M., Buchanan, D., Snioch, D., and Hebishy, E. (2021). A review of food fraud and food authenticity across the food supply chain, with an examination of the impact of the COVID-19 pandemic and Brexit on food industry. Food Control 130, 108171 https://doi.org/10.1016/j.foodcont.2021.108171. DOI: https://doi.org/10.1016/j.foodcont.2021.108171
Cai, Z., Zhong, G., Liu, Q., Yang, X., Zhang, X., Zhou, S., Zeng, X., Wu, Z., and Pan, D. (2022). Molecular authentication of twelve meat species through a promising two-tube hexaplex polymerase chain reaction technique. Frontiers in Nutrition 9 doi: 10.3389/fnut.2022.813962. DOI: https://doi.org/10.3389/fnut.2022.813962
Cerk, K., and Aguilera‐Gómez, M. (2022). Microbiota analysis for risk assessment: evaluation of hazardous dietary substances and its potential role on the gut microbiome variability and dysbiosis. EFSA Journal 20, e200404 https://doi.org/10.2903/j.efsa.2022.e200404. DOI: https://doi.org/10.2903/j.efsa.2022.e200404
Costa, M. F., Pimentel, T. C., Guimaraes, J. T., Balthazar, C. F., Rocha, R. S., Cavalcanti, R. N., Esmerino, E. A., Freitas, M. Q., Raices, R. S., and Silva, M. C. (2019). Impact of prebiotics on the rheological characteristics and volatile compounds of Greek yogurt. Lwt 105, 371-376 https://doi.org/10.1016/j.lwt.2019.02.007. DOI: https://doi.org/10.1016/j.lwt.2019.02.007
Cristian, S., Valentin, V., Marian, V., Elena, S., Mario, C., Laurențiu, V., and Augustina, P. ASPECTE PRIVIND CONSERVAREA PRODUSELOR ALIMENTARE LICHIDE, UTILIZÂND PROCEDEUL DE STERILIZARE PRIN INFUZIE DIRECTĂ ASPECTS REGARDING THE PRESERVATION OF LIQUID FOOD PRODUCTS USING THE STERILIZATION PROCESS BASED ON DIRECT HEATING STEAM INFUSION DOI 10.33045/fgr.v38.2022.32.
Datir, R. P., Birwal, P., Meshram, B. D., Ranvir, S. G., and Adil, S. APPLICATION OF PULSED ELECTRIC FIELD (PEF) IN DAIRY BEVERAGES DOI:10.1002/9780470277898. DOI: https://doi.org/10.1002/9780470277898
Davies, C., Bergman, J., Eshraghi, A. A., Mittal, R., and Eshraghi, R. S. (2022). the gut microbiome: potential clinical applications in disease management: novel approaches using diet and nutraceuticals to reduce manifestations of accelerated aging, obesity, type 2 diabetes, gastrointestinal disorders, neurological disorders, immunological disorders, anxiety, and depression. In "Gut–Brain Connection, Myth or Reality? Role of The Microbiome in Health and Disease", pp. 195-236. World Scientific https://doi.org/10.1142/9789811221156_0009. DOI: https://doi.org/10.1142/9789811221156_0009
Dullius, A., Goettert, M. I., and de Souza, C. F. V. (2018). Whey protein hydrolysates as a source of bioactive peptides for functional foods–Biotechnological facilitation of industrial scale-up. Journal of Functional Foods 42, 58-74 https://doi.org/10.1016/j.jff.2017.12.063 DOI: https://doi.org/10.1016/j.jff.2017.12.063
Eroğlu, F. E., and Sanlier, N. (2022). Effect of fermented foods on some neurological diseases, microbiota, behaviors: mini review. Critical Reviews in Food Science and Nutrition, 1-17 https://doi.org/10.1080/10408398.2022.2053060. DOI: https://doi.org/10.1080/10408398.2022.2053060
Fang, G.-Y., Mu, X.-J., Huang, B.-W., Wu, G.-Z., and Jiang, Y.-J. (2023). Fungal biodiversity and interaction complexity were the important drivers of multifunctionality for flavor production in a spontaneously fermented vinegar. Innovative Food Science & Emerging Technologies 83, 103259 https://doi.org/10.1016/j.ifset.2022.103259. DOI: https://doi.org/10.1016/j.ifset.2022.103259
Ferris, I. M. (2022). Hazard analysis and critical control points (HACCP). In "Applied food science", pp. 187-213. Wageningen Academic Publishers https://doi.org/10.3920/978-90-8686-933-6_10. DOI: https://doi.org/10.3920/978-90-8686-933-6_10
Franzago, M., Alessandrelli, E., Notarangelo, S., Stuppia, L., and Vitacolonna, E. (2023). Chrono-Nutrition: Circadian Rhythm and Personalized Nutrition. International Journal of Molecular Sciences 24, 2571 https://doi.org/10.3390/ijms24032571. DOI: https://doi.org/10.3390/ijms24032571
Fu, Y., and Dudley, E. G. (2021). Antimicrobial‐coated films as food packaging: A review. Comprehensive Reviews in Food Science and Food Safety 20, 3404-3437 https://doi.org/10.1111/1541-4337.12769. DOI: https://doi.org/10.1111/1541-4337.12769
Gao, Z., Liu, Y., Wang, X., Wei, X., and Han, J. (2019). DNA mini-barcoding: a derived barcoding method for herbal molecular identification. Frontiers in plant science 10, 987 https://doi.org/10.3389/fpls.2019.00987. DOI: https://doi.org/10.3389/fpls.2019.00987
Godrich, J., Rose, P., Muleya, M., and Gould, J. (2023). The effect of popping, soaking, boiling and roasting processes on antinutritional factors in chickpeas and red kidney beans. International Journal of Food Science & Technology 58, 279-289 https://doi.org/10.1111/ijfs.16190. DOI: https://doi.org/10.1111/ijfs.16190
Gourama, H. (2020). Foodborne pathogens. Food safety engineering, 25-49 https://doi.org/10.1007/978-3-030-42660-6_2. DOI: https://doi.org/10.1007/978-3-030-42660-6_2
Gupta, A., Saha, S., and Khanna, S. (2020). Therapies to modulate gut microbiota: Past, present and future. World journal of gastroenterology 26, 777 doi: 10.3748/wjg.v26.i8.777. DOI: https://doi.org/10.3748/wjg.v26.i8.777
Han, S., Byun, K.-H., Mizan, M. F. R., Kang, I., and Ha, S.-D. (2022). Bacteriophage and their lysins: A new era of biocontrol for inactivation of pathogenic bacteria in poultry processing and production—A review. Food Control, 108976 https://doi.org/10.1016/j.foodcont.2022.108976. DOI: https://doi.org/10.1016/j.foodcont.2022.108976
Hassoun, A., Jagtap, S., Garcia-Garcia, G., Trollman, H., Pateiro, M., Lorenzo, J. M., Trif, M., Rusu, A., Aadil, R. M., and Šimat, V. (2022). Food quality 4.0: From traditional approaches to digitalized automated analysis. Journal of Food Engineering, 111216 https://doi.org/10.1016/j.jfoodeng.2022.111216. DOI: https://doi.org/10.1016/j.jfoodeng.2022.111216
Howard, E. J., Lam, T. K., and Duca, F. A. (2022). The gut microbiome: connecting diet, glucose homeostasis, and disease. Annual review of medicine 73, 469-481 https://doi.org/10.1146/annurev-med-042220-012821. DOI: https://doi.org/10.1146/annurev-med-042220-012821
Hsu, C.-N., Yu, H.-R., Chan, J. Y., Wu, K. L., Lee, W.-C., and Tain, Y.-L. (2022). The impact of gut microbiome on maternal fructose intake-induced developmental programming of adult disease. Nutrients 14, 1031 https://doi.org/10.3390/nu14051031. DOI: https://doi.org/10.3390/nu14051031
Islam, S., Thangadurai, D., Sangeetha, J., and Cruz-Martins, N. (2023). "Global Food Safety: Microbial Interventions and Molecular Advancements," CRC Press https://doi.org/10.1155/2015/617417. DOI: https://doi.org/10.1201/9781003283140
JUNAID, P. M., AHMAD, F., DAR, I. H., BHAT, A. H., MANZOOR, S., PANDITH, J. A., and KHAN, F. (2023). PRESERVATION STRATEGIES FOR FRUITS AND VEGETABLES: PAST, PRESENT, AND FUTURE SCOPE. Quality Control in Fruit and Vegetable Processing: Methods and Strategies, 143 https://doi.org/10.1128/9781555819972.ch42. DOI: https://doi.org/10.1201/9781003304999-8
Kadri, K. (2019). Polymerase chain reaction (PCR): Principle and applications. Synthetic Biology-New Interdisciplinary Science DOI: 10.1126/science.2047872. DOI: https://doi.org/10.5772/intechopen.86491
Karim, A., Gerliani, N., and Aïder, M. (2020). Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. International Journal of Food Microbiology 333, 108818 https://doi.org/10.1016/j.ijfoodmicro.2020.108818. DOI: https://doi.org/10.1016/j.ijfoodmicro.2020.108818
Khaliq, A., Chughtai, M. F. J., Mehmood, T., Ahsan, S., Liaqat, A., Nadeem, M., Sameed, N., Saeed, K., Rehman, J. U., and Ali, A. (2021). High-pressure processing; principle, applications, impact, and future prospective. In "Sustainable Food Processing and Engineering Challenges", pp. 75-108. Elsevier https://doi.org/10.1016/B978-0-12-822714-5.00003-6. DOI: https://doi.org/10.1016/B978-0-12-822714-5.00003-6
Khan, F. A. (2020). "Biotechnology fundamentals," CRC Press https://doi.org/10.1007/978-3-642-12362-7. DOI: https://doi.org/10.1201/9781003024750
Khan, M., and Sathya, T. (2018). Extremozymes from metagenome: Potential applications in food processing. Critical reviews in food science and nutrition 58, 2017-2025 https://doi.org/10.1080/10408398.2017.1296408. DOI: https://doi.org/10.1080/10408398.2017.1296408
Kim, E., Choi, C. H., Yang, S.-M., Shin, M.-K., and Kim, H.-Y. (2023). Rapid identification and absolute quantitation of zero tolerance-Salmonella enterica subsp. enterica serovar Thompson using droplet digital polymerase chain reaction. LWT 173, 114333 https://doi.org/10.1016/j.lwt.2022.114333. DOI: https://doi.org/10.1016/j.lwt.2022.114333
Kumar, K., Gambhir, G., Dass, A., Tripathi, A. K., Singh, A., Jha, A. K., Yadava, P., Choudhary, M., and Rakshit, S. (2020). Genetically modified crops: current status and future prospects. Planta 251, 1-27 https://doi.org/10.1007/s00425-020-03372-8. DOI: https://doi.org/10.1007/s00425-020-03372-8
Kumari, S., and Kulkarni, P. (2022). Potential Concern of Foodborne Pathogens in the Food Industry. In "Biological and Chemical Hazards in Food and Food Products", pp. 27-61. Apple Academic Press https://doi.org/10.3390/foods12030592. DOI: https://doi.org/10.1201/9781003189183-3
Lim, S. H., Chin, N. L., Sulaiman, A., Tay, C. H., and Wong, T. H. (2023). Microbiological, Physicochemical and Nutritional Properties of Fresh Cow Milk Treated with Industrial High-Pressure Processing (HPP) during Storage. Foods 12, 592 https://doi.org/10.3390/foods12030592. DOI: https://doi.org/10.3390/foods12030592
Lin, N., Jackson, S., Servetas, S., Parratt, K., Dunkers, J., Eskandari, T., and Lin-Gibson, S. (2022). Report from the NIST Workshop: Launch of the Rapid Microbial Testing Methods Consortium https://doi.org/10.1016/j.jcyt.2020.07.006. DOI: https://doi.org/10.6028/NIST.SP.1272
Mahendran, R., Ramanan, K. R., Barba, F. J., Lorenzo, J. M., López-Fernández, O., Munekata, P. E., Roohinejad, S., Sant'Ana, A. S., and Tiwari, B. K. (2019). Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends in Food Science & Technology 88, 67-7 https://doi.org/10.1016/j.tifs.2019.03.0109. DOI: https://doi.org/10.1016/j.tifs.2019.03.010
Martín, R., and Langella, P. (2019). Emerging health concepts in the probiotics field: streamlining the definitions. Frontiers in microbiology 10, 1047 doi: 10.3389/fmicb.2019.01047. DOI: https://doi.org/10.3389/fmicb.2019.01047
Minta, A. A., Ferrari, M., Antoni, S., Portnoy, A., Sbarra, A., Lambert, B., Hauryski, S., Hatcher, C., Nedelec, Y., and Datta, D. (2022). Progress Toward Regional Measles Elimination—Worldwide, 2000–2021. Morbidity and Mortality Weekly Report 71, 1489-1495 doi: 10.15585/mmwr.mm7147a1. DOI: https://doi.org/10.15585/mmwr.mm7147a1
Mohanty, A., Mankoti, M., Rout, P. R., Meena, S. S., Dewan, S., Kalia, B., Varjani, S., Wong, J. W., and Banu, J. R. (2022). Sustainable utilization of food waste for bioenergy production: A step towards circular bioeconomy. International Journal of Food Microbiology 365, 109538 https://www.example.edu/paper.pdf. DOI: https://doi.org/10.1016/j.ijfoodmicro.2022.109538
Monjazeb Marvdashti, L., Arabameri, M., Yousefi, B., Eslami, M., Emadi, A., Ebrahimi, A., Abdolshahi, A., and A Abdel-Wahhab, M. (2023). Cold Plasma Technology Impact on Microorganisms Inactivation in Foods: A Systematic Review. Journal of Chemical Health Risks 10.22034/JCHR.2023.1971021.1633.
Mustafa, M. A., AL-Samarraie, M. Q., and Ahmed, M. T. (2020). Molecular techniques of viral diagnosis. Science Archives 1, 89-92 http://dx.doi.org/10.47587/SA.2020.1304. DOI: https://doi.org/10.47587/SA.2020.1304
Neffe-Skocińska, K., Rzepkowska, A., Szydłowska, A., and Kołożyn-Krajewska, D. (2018). Trends and possibilities of the use of probiotics in food production. In "Alternative and replacement foods", pp. 65-94. Elsevier https://doi.org/10.1016/B978-0-12-811446-9.00003-4. DOI: https://doi.org/10.1016/B978-0-12-811446-9.00003-4
Nguyen, A. Q., Vu, H. P., Nguyen, L. N., Wang, Q., Djordjevic, S. P., Donner, E., Yin, H., and Nghiem, L. D. (2021). Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges. Science of the Total Environment 783, 146964 https://doi.org/10.1016/j.scitotenv.2021.146964. DOI: https://doi.org/10.1016/j.scitotenv.2021.146964
Nithyananthan, S., Somenath, S., Sreenadh, B., Thirunavukkarasu, C., Bahakim, N. O., Shahid, M., Abdelzaher, M. H., Mohideen, A. P., Ramesh, T., and Lokanatha, V. (2023). Selenium conditioning decreases antioxidant enzyme activity and delays germination potency of Macrotyloma uniflorum and Vigna radiate. Journal of King Saud University-Science 35, 102501 https://doi.org/10.1016/j.jksus.2022.102501. DOI: https://doi.org/10.1016/j.jksus.2022.102501
Novais, C., Molina, A. K., Abreu, R. M., Santo-Buelga, C., Ferreira, I. C., Pereira, C., and Barros, L. (2022). Natural food colorants and preservatives: a review, a demand, and a challenge. Journal of agricultural and food chemistry 70, 2789-2805 https://doi.org/10.1021/acs.jafc.1c07533. DOI: https://doi.org/10.1021/acs.jafc.1c07533
Onyeaka, H., Nwabor, O., Jang, S., Obileke, K., Hart, A., Anumudu, C., and Miri, T. (2022). Sous vide processing: a viable approach for the assurance of microbial food safety. Journal of the Science of Food and Agriculture 102, 3503-3512 https://doi.org/10.1002/jsfa.11836. DOI: https://doi.org/10.1002/jsfa.11836
Osborne, J. (2022). Advances in microbiological quality control. In "Managing Wine Quality", pp. 207-241. Elsevier https://doi.org/10.1016/B978-0-08-102067-8.00011-7. DOI: https://doi.org/10.1016/B978-0-08-102067-8.00011-7
Owusu-Apenten, R., and Vieira, E. (2022). Food Safety Management, GMP & HACCP. In "Elementary Food Science", pp. 217-236. Springer https://doi.org/10.1007/978-3-030-65433-7_10. DOI: https://doi.org/10.1007/978-3-030-65433-7_10
Pandhi, S., Kumar, A., and Mishra, S. Foodborne Diseases: Causative Agents and Related Microorganisms. In "Global Food Safety", pp. 39-55. Apple Academic Press https://doi.org/10.1007/978-1-4939-1378-7_8. DOI: https://doi.org/10.1201/9781003283140-3
Pebdeni, A. B., Roshani, A., Mirsadoughi, E., Behzadifar, S., and Hosseini, M. (2022). Recent advances in optical biosensors for specific detection of E. coli bacteria in food and water. Food Control, 108822 https://doi.org/10.1016/j.foodcont.2022.108822. DOI: https://doi.org/10.1016/j.foodcont.2022.108822
Punthi, F., Yudhistira, B., Gavahian, M., Chang, C. K., Cheng, K. C., Hou, C. Y., and Hsieh, C. W. (2022). Pulsed electric field‐assisted drying: A review of its underlying mechanisms, applications, and role in fresh produce plant‐based food preservation. Comprehensive Reviews in Food Science and Food Safety 21, 5109-5130 https://doi.org/10.1111/1541-4337.13052. DOI: https://doi.org/10.1111/1541-4337.13052
Rahman, M. H. (2016). Exploring sustainability to feed the world in 2050. Journal of Food Microbiology 1 https://doi.org/10.1007/978-981-287-417-7_1. DOI: https://doi.org/10.1007/978-981-287-417-7_1
Rahman, M. S. (2020). Food preservation: an overview. Handbook of food preservation, 7-18 https://doi.org/10.1128/9781555818463.ch29. DOI: https://doi.org/10.1201/9780429091483-3
Rajanna, S. K. S., Jayanna, N. K. K., Bongale, M. M., and Srinivasa, C. Role of Foodborne Pathogens and Microorganisms in Food Safety. In "Global Food Safety", pp. 57-91. Apple Academic Press https://doi.org/10.1016/B978-0-12-811444-5.00015-4. DOI: https://doi.org/10.1201/9781003283140-4
Rajapaksha, P., Elbourne, A., Gangadoo, S., Brown, R., Cozzolino, D., and Chapman, J. (2019). A review of methods for the detection of pathogenic microorganisms. Analyst 144, 396-411 https://doi.org/10.1039/C8AN01488D. DOI: https://doi.org/10.1039/C8AN01488D
Rajput, K., Dohroo, A., Devgon, I., and Karnwal, A. (2022). Role of Plant-Derived Prebiotic in Modulation of Human Gut Microflora: A Review. Iranian Journal of Medical Microbiology 16, 368-375 10.30699/ijmm.16.5.368. DOI: https://doi.org/10.30699/ijmm.16.5.368
Roberts, M. T., Viinikainen, T., and Bullon, C. (2022). "International and national regulatory strategies to counter food fraud," Food & Agriculture Org https://doi.org/10.1016/B978-0-12-817242-1.00018-.
Ronin, D., Boyer, J., Alban, N., Natoli, R. M., Johnson, A., and Kjellerup, B. V. (2022). Current and novel diagnostics for orthopedic implant biofilm infections: a review. APMIS 130, 59-81 https://doi.org/10.1111/apm.13197. DOI: https://doi.org/10.1111/apm.13197
Sarkar, M. S., and Vardhan, M. N. (2023). FOOD SCIENCE AND NUTRITION. Aazadi ka Amrit Mahotsav: Community Science Achievements, Opportunities and Challenges, 73 https://www.example.edu/paper.pdf.
Schlundt, J., Tay, M. Y., Chengcheng, H., and Liwei, C. (2020). Food security: microbiological and chemical risks. Global Health Security: Recognizing Vulnerabilities, Creating Opportunities, 231-274 https://doi.org/10.1007/978-3-030-23491-1_11. DOI: https://doi.org/10.1007/978-3-030-23491-1_11
Shajil, S., Mary, A., and Rani Juneius, C. E. (2018). Recent food preservation techniques employed in the food industry. Microbial Biotechnology: Volume 2. Application in Food and Pharmacology, 3-21 https://doi.org/10.1007/978-981-10-7140-9_1. DOI: https://doi.org/10.1007/978-981-10-7140-9_1
Sharma, M., Wasan, A., and Sharma, R. K. (2021). Recent developments in probiotics: An emphasis on Bifidobacterium. Food Bioscience 41, 100993 https://doi.org/10.1016/j.fbio.2021.100993. DOI: https://doi.org/10.1016/j.fbio.2021.100993
Sharma, S., Bhatia, R., Devi, K., Rawat, A., Singh, S., Bhadada, S. K., Bishnoi, M., Sharma, S. S., and Kondepudi, K. K. (2023). A synbiotic combination of Bifidobacterium longum Bif10 and Bifidobacterium breve Bif11, isomaltooligosaccharides and finger millet arabinoxylan prevents dextran sodium sulphate induced ulcerative colitis in mice. International Journal of Biological Macromolecules, 123326 https://doi.org/10.1016/j.ijbiomac.2023.123326. DOI: https://doi.org/10.1016/j.ijbiomac.2023.123326
Sharma, S., and Tripathi, P. (2019). Gut microbiome and type 2 diabetes: where we are and where to go? The Journal of nutritional biochemistry 63, 101-108 https://doi.org/10.1016/j.jnutbio.2018.10.003. DOI: https://doi.org/10.1016/j.jnutbio.2018.10.003
Silva, F. V. M. (2023). Pasteurization of Food and Beverages by High Pressure Processing (HPP) at Room Temperature: Inactivation of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Salmonella, and Other Microbial Pathogens. Applied Sciences 13, 1193 https://doi.org/10.3390/app13021193. DOI: https://doi.org/10.3390/app13021193
Smith, C., Van Haute, M. J., Xian, Y., Segura Munoz, R. R., Liu, S., Schmaltz, R. J., Ramer-Tait, A. E., and Rose, D. J. (2022). Carbohydrate utilization by the gut microbiome determines host health responsiveness to whole grain type and processing methods. Gut Microbes 14, 2126275 https://doi.org/10.1080/19490976.2022.2126275. DOI: https://doi.org/10.1080/19490976.2022.2126275
Socaci, S. A., Fărcaş, A. C., Aussenac, T., and Laguerre, J.-C. (2020). "Food Preservation and Waste Exploitation," BoD–Books on Demand https://www.example.edu/paper.pdf.
Starowicz, M., and Granvogl, M. (2020). Trends in food science & technology an overview of mead production and the physicochemical, toxicological, and sensory characteristics of mead with a special emphasis on flavor. Trends in food science & Technology 106, 402-416 https://doi.org/10.1016/j.tifs.2020.09.006. DOI: https://doi.org/10.1016/j.tifs.2020.09.006
Suhartanto, D., Helmi Ali, M., Tan, K. H., Sjahroeddin, F., and Kusdibyo, L. (2019). Loyalty toward online food delivery service: the role of e-service quality and food quality. Journal of foodservice business research 22, 81-97 https://doi.org/10.1080/15378020.2018.1546076. DOI: https://doi.org/10.1080/15378020.2018.1546076
Tan, S. F., Chin, N. L., Tee, T. P., and Chooi, S. K. (2020). Physico-chemical changes, microbiological properties, and storage shelf life of cow and goat milk from industrial high-pressure processing. Processes 8, 697 https://doi.org/10.3390/pr8060697. DOI: https://doi.org/10.3390/pr8060697
Tavelli, R., Callens, M., Grootaert, C., Abdallah, M. F., and Rajkovic, A. (2022). Foodborne pathogens in the plastisphere: Can microplastics in the food chain threaten microbial food safety? Trends in Food Science & Technology https://doi.org/10.1016/j.tifs.2022.08.021. DOI: https://doi.org/10.1016/j.tifs.2022.08.021
Tegegne, B. A., and Kebede, B. (2022). Probiotics, their prophylactic and therapeutic applications in human health development: A review of the literature. Heliyon, e09725 DOI:https://doi.org/10.1016/j.heliyon.2022.e09725. DOI: https://doi.org/10.1016/j.heliyon.2022.e09725
Thakur, S., Jha, B., Bhardwaj, N., Singh, A., Sawale, P. D., and Kumar, A. (2022). Isochoric freezing of foods: A review of instrumentation, mechanism, physicochemical influence, and applications. Journal of Food Processing and Preservation, e17113 https://doi.org/10.1111/jfpp.17113. DOI: https://doi.org/10.1111/jfpp.17113
Torres-León, C., Chávez-González, M. L., Hernández-Almanza, A., Martínez-Medina, G. A., Ramírez-Guzmán, N., Londoño-Hernández, L., and Aguilar, C. N. (2021). Recent advances on the microbiological and enzymatic processing for conversion of food wastes to valuable bioproducts. Current Opinion in Food Science 38, 40-45 https://doi.org/10.1016/j.cofs.2020.11.002. DOI: https://doi.org/10.1016/j.cofs.2020.11.002
Tousoulis, D., Guzik, T., Padro, T., Duncker, D. J., De Luca, G., Eringa, E., Vavlukis, M., Antonopoulos, A. S., Katsimichas, T., and Cenko, E. (2022). Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and cardiovascular diseases: a position paper by the ESC Working Group on Coronary Pathophysiology and Microcirculation. Cardiovascular research 118, 3171-3182 https://doi.org/10.1093/cvr/cvac057. DOI: https://doi.org/10.1093/cvr/cvac057
Trigo, J. P., Alexandre, E. M., Saraiva, J. A., and Pintado, M. E. (2022). High value-added compounds from fruit and vegetable by-products–Characterization, bioactivities, and application in the development of novel food products. Critical reviews in food science and nutrition 60, 1388-1416 https://doi.org/10.1080/10408398.2019.1572588. DOI: https://doi.org/10.1080/10408398.2019.1572588
Tsafrakidou, P., Michaelidou, A.-M., and G. Biliaderis, C. (2020). Fermented cereal-based products: Nutritional aspects, possible impact on gut microbiota and health implications. Foods 9, 734 https://doi.org/10.3390/foods9060734. DOI: https://doi.org/10.3390/foods9060734
Ullah, H., Hussain, Y., Santarcangelo, C., Baldi, A., Di Minno, A., Khan, H., Xiao, J., and Daglia, M. (2022). Natural Polyphenols for the Preservation of Meat and Dairy Products. Molecules 27, 1906 https://doi.org/10.3390/molecules27061906. DOI: https://doi.org/10.3390/molecules27061906
Utpott, M., Rodrigues, E., de Oliveira Rios, A., Mercali, G. D., and Flôres, S. H. (2022). Metabolomics: An analytical technique for food processing evaluation. Food Chemistry 366, 130685 https://doi.org/10.1016/j.foodchem.2021.130685. DOI: https://doi.org/10.1016/j.foodchem.2021.130685
Vaca, J., Ortiz, A., and Sansinenea, E. (2023). A study of bacteriocin like substances comparison produced by different species of Bacillus related to B. cereus group with specific antibacterial activity against foodborne pathogens. Archives of Microbiology 205, 13 https://doi.org/10.1007/s00203-022-03356-0. DOI: https://doi.org/10.1007/s00203-022-03356-0
Van Wyk, S., Hong, L., and Silva, F. V. (2021). Non-thermal high pressure processing, pulsed electric fields and ultrasound preservation of five different table wines. Beverages 7, 69 https://doi.org/10.1007/s00203-022-03356-0. DOI: https://doi.org/10.3390/beverages7040069
Varghese, S. M., Parisi, S., Singla, R. K., and Begum, A. A. (2022). Food Safety and Quality Control in Food Industry. Trends in Food Chemistry, Nutrition and Technology in Indian Sub-Continent, 31-44 https://doi.org/10.1007/978-3-031-06304-6. DOI: https://doi.org/10.1007/978-3-031-06304-6_5
Vemuri, R., and Herath, M. P. (2023). Beyond the Gut, Emerging Microbiome Areas of Research: A Focus on Early-Life Microbial Colonization. Microorganisms 11, 239 https://doi.org/10.3390/microorganisms11020239. DOI: https://doi.org/10.3390/microorganisms11020239
Vesna, L., Natalija, A.-P., Daniela, B., Sandra, M., and Natasha, G. (2022). FERMENTED PLANT BASED PRODUCTS IN EVERYDAY NUTRITION IN MACEDONIA AND THEIR POTENTIAL OF PROBIOTIC VECTORS. Macedonian Journal of Animal Science http://hdl.handle.net/20.500.12188/24941.
Vieira, K. C. d. O., Silva, H. R. A. d., Rocha, I. P. M., Barboza, E., and Eller, L. K. W. (2022). Foodborne pathogens in the omics era. Critical Reviews in Food Science and Nutrition 62, 6726-6741 https://doi.org/10.1080/10408398.2021.1905603. DOI: https://doi.org/10.1080/10408398.2021.1905603
Visciano, P., and Schirone, M. (2021). Food frauds: Global incidents and misleading situations. Trends in Food Science & Technology 114, 424-442 https://doi.org/10.1016/j.tifs.2021.06.010 DOI: https://doi.org/10.1016/j.tifs.2021.06.010
Get rights and content.
Volkmann, E. R. (2023). Is there a role for the microbiome in systemic sclerosis? Expert Review of Clinical Immunology https://doi.org/10.1080/1744666X.2023.2161512. DOI: https://doi.org/10.1080/1744666X.2023.2161512
Wang, J., Zhao, F., Huang, J., Li, Q., Yang, Q., and Ju, J. (2023). Application of essential oils as slow-release antimicrobial agents in food preservation: Preparation strategies, release mechanisms and application cases. Critical Reviews in Food Science and Nutrition, 1-26 https://doi.org/10.1080/10408398.2023.2167066. DOI: https://doi.org/10.1080/10408398.2023.2167066
Wang, Y., Zhang, C., Liu, F., Jin, Z., and Xia, X. (2022). Ecological succession and functional characteristics of lactic acid bacteria in traditional fermented foods. Critical reviews in food science and nutrition, 1-15 https://doi.org/10.1080/10408398.2021.2025035. DOI: https://doi.org/10.1080/10408398.2021.2025035
Wu, C.-P., Wu, S.-M., Lin, Y.-H., Wu, Y.-H., Huang, B.-C., Huang, H.-W., and Wang, C.-Y. (2022). High pressure processing-based hurdle strategy for microbial shelf life of packed food in the Cold Chain. Food Packaging and Shelf Life 34, 100983 https://doi.org/10.1016/j.fpsl.2022.100983. DOI: https://doi.org/10.1016/j.fpsl.2022.100983
Xu, Y., Hassan, M. M., Sharma, A. S., Li, H., and Chen, Q. (2023). Recent advancement in nano-optical strategies for detection of pathogenic bacteria and their metabolites in food safety. Critical Reviews in Food Science and Nutrition 63, 486-504 https://doi.org/10.1080/10408398.2021.1950117. DOI: https://doi.org/10.1080/10408398.2021.1950117
Yu, Z., Henderson, I. R., and Guo, J. (2023). Non-caloric artificial sweeteners modulate conjugative transfer of multi-drug resistance plasmid in the gut microbiota. Gut Microbes 15, 2157698 https://doi.org/10.1080/19490976.2022.2157698. DOI: https://doi.org/10.1080/19490976.2022.2157698
Zhang, W., Sani, M. A., Zhang, Z., McClements, D. J., and Jafari, S. M. (2023). High performance biopolymeric packaging films containing zinc oxide nanoparticles for fresh food preservation: A review. International Journal of Biological Macromolecules, 123188 https://doi.org/10.1016/j.ijbiomac.2023.123188 DOI: https://doi.org/10.1016/j.ijbiomac.2023.123188
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 A SAMI, MZ HAIDER, M IMRAN, A ABBAS, MM JAVED
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.