MECHANISMS OF ACTION AND SIGNALING PATHWAYS INVOLVED IN ABIOTIC STRESS ELICITATION
DOI:
https://doi.org/10.64013/bbasr.v2026i1.116Keywords:
Abiotic stress, Signal transduction, Transcriptional regulation, Stress-resilient crops, oxidative stressAbstract
Abiotic stressors like drought, salinity, heat, heavy metals, oxidative stress, and UV radiation severely limit plant growth, development, and productivity. Plants detect these stresses using particular membrane sensors, resulting in fast changes in intracellular calcium concentrations, reactive oxygen species pulses, and phytohormone signaling. These initial signals are converted into conserved kinase signaling pathways (MAPKs, CDPKs, SnRK2s) and hormone-mediated pathways (ABA-dependent and ABA-independent), which then activate stress-responsive transcription factors (DREBs, NACs, WRKYs, MYBs) and remodel the transcriptome. Chromatin modification, alternative splicing, short RNAs, and post-translational modifications (phosphorylation and ubiquitination) all contribute to complicated regulation, ensuring precise control of stress gene expression. Plants use hormonal interactions and network hubs to balance survival, growth, and defense. Recent advances in systems biology have revealed these complicated networks, and biotechnological approaches—transgenic methods, CRISPR/Cas genome editing, and multi-omics integration—have opened up new avenues for the production of stress-tolerant crops. This chapter provides a thorough, human-crafted overview of these processes and examines future directions for applying molecular knowledge to sustainable farming operations.
Downloads
References
Agarwal, P., Jiwani, G., Khurana, A., Gupta, P., and Kumar, R. (2017). Ethylene and stress mediated signaling in plants: a molecular perspective. Mechanism of Plant Hormone Signaling under Stress 1, 295-326. https://doi.org/10.1002/9781118889022.ch12
Ahmad, H. M., Fiaz, S., Hafeez, S., Zahra, S., Shah, A. N., Gul, B., Aziz, O., Fakhar, A., Rafique, M., and Chen, Y. (2022). Plant growth-promoting rhizobacteria eliminate the effect of drought stress in plants: a review. Frontiers in Plant Science 13, 875774. https://doi.org/10.1002/9781118889022.ch12
Alharbi, K., Al-Osaimi, A. A., and Alghamdi, B. A. (2022). Sodium chloride (NaCl)-induced physiological alteration and oxidative stress generation in Pisum sativum (L.): A toxicity assessment. ACS omega 7, 20819-20832. https://doi.org/10.1021/acsomega.2c01427
Ali, J., and Chen, R. Z. (2024). "Chemical Ecology: Insect-Plant Interactions," CRC Press.
Allakhverdiev, S. I., Kreslavski, V. D., Fomina, I. R., Los, D. A., Klimov, V. V., Mimuro, M., Mohanty, P., and Carpentier, R. (2012). Inactivation and repair of photosynthetic machinery under heat stress. Photosynthesis: overviews on recent progress and future perspective. IK International Publishing House Pvt. Ltd., New Delhi, 189.
Alves, H. L., Matiolli, C. C., Soares, R. C., Almadanim, M. C., Oliveira, M. M., and Abreu, I. A. (2021). Carbon/nitrogen metabolism and stress response networks–calcium-dependent protein kinases as the missing link? Journal of Experimental Botany 72, 4190-4201. https://doi.org/10.1093/jxb/erab136
Angon, P. B., Tahjib-Ul-Arif, M., Samin, S. I., Habiba, U., Hossain, M. A., and Brestic, M. (2022). How do plants respond to combined drought and salinity stress?—A systematic review. Plants 11, 2884. https://doi.org/10.3390/plants11192884
Aramburu, J., Ortells, M. C., Tejedor, S., Buxadé, M., and López-Rodríguez, C. (2014). Transcriptional regulation of the stress response by mTOR. Science signaling 7, re2-re2. https://doi.org/10.1126/scisignal.2005910
Argosubekti, N. (2020). A review of heat stress signaling in plants. In "IOP Conference Series: Earth and Environmental Science", Vol. 484, pp. 012041. IOP Publishing. https://doi.org/10.1088/1755-1315/484/1/012041
Asano, T., Hayashi, N., Kikuchi, S., and Ohsugi, R. (2012). CDPK-mediated abiotic stress signaling. Plant Signaling & Behavior 7, 817-821. https://doi.org/10.4161/psb.20486
Aslam, M. A., Ahmed, M., Hassan, F.-U., Afzal, O., Mehmood, M. Z., Qadir, G., Asif, M., Komal, S., and Hussain, T. (2022). Impact of temperature fluctuations on plant morphological and physiological traits. Building climate resilience in agriculture: theory, practice and future perspective, 25-52. https://doi.org/10.1007/978-981-19-2730-8_2
Avramova, Z. (2015). Transcriptional ‘memory’of a stress: transient chromatin and memory (epigenetic) marks at stress‐response genes. The Plant Journal 83, 149-159. https://doi.org/10.1111/tpj.12716
Ayub, A., Javed, T., Nayab, A., Nan, Y., Xie, Y., Hussain, S., Shafiq, Y., Tian, H., Hui, J., and Gao, Y. (2025). AREB/ABF/ABI5 transcription factors in plant defense: regulatory cascades and functional diversity. Critical Reviews in Biotechnology, 1-21. https://doi.org/10.1080/07388551.2024.2301234
Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., and Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Frontiers in pharmacology 12, 643972. https://doi.org/10.3389/fphar.2021.643972
Banerjee, A., and Roychoudhury, A. (2017). Abiotic stress, generation of reactive oxygen species, and their consequences: an overview. Reactive Oxygen Species in Plants: Boon or Bane‐Revisiting the Role of ROS, 23-50. https://doi.org/10.1002/9781119368762.ch2
Basso, M. F., Ferreira, P. C. G., Kobayashi, A. K., Harmon, F. G., Nepomuceno, A. L., Molinari, H. B. C., and Grossi‐de‐Sa, M. F. (2019). Micro RNA s and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant biotechnology journal 17, 1482-1500. https://doi.org/10.1111/pbi.13088
Bhattacharjee, S. (2012). The language of reactive oxygen species signaling in plants. Journal of Botany 2012, 985298. https://doi.org/10.1155/2012/985298
Bieluszewski, T., Prakash, S., Roulé, T., and Wagner, D. (2023). The role and activity of SWI/SNF chromatin remodelers. Annual Review of Plant Biology 74, 139-163. https://doi.org/10.1146/annurev-arplant-102820-012728
Bucholc, M., Goch, G., Ciesielski, A., Anielska-Mazur, A., and Dobrowolska, G. (2013). Functional and biochemical characterization of Arabidopsis calcium sensor SCS a potential regulator of SnRK2 protein kinases. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology 94.
Callis, J. (2014). The ubiquitination machinery of the ubiquitin system. The Arabidopsis Book/American Society of Plant Biologists 12, e0174. https://doi.org/10.1199/tab.0174
Chen, Q., Shi, X., Ai, L., Tian, X., Zhang, H., Tian, J., Wang, Q., Zhang, M., Cui, S., and Yang, C. (2023). Genome-wide identification of genes encoding SWI/SNF components in soybean and the functional characterization of GmLFR1 in drought-stressed plants. Frontiers in Plant Science 14, 1176376. https://doi.org/10.3389/fpls.2023.1176376
Cheuvront, S. N., Kenefick, R. W., Montain, S. J., and Sawka, M. N. (2010). Mechanisms of aerobic performance impairment with heat stress and dehydration. Journal of applied physiology 109, 1989-1995. https://doi.org/10.1152/japplphysiol.00367.2010
Costa Alves, G. (2015). Characterization of a candidate gene for drought tolerance in Coffea: the CcDREB1D gene, in contrasting genotypes of Coffea canephora and related species, Montpellier SupAgro.
Damaris, R. N., and Yang, P. (2021). Protein phosphorylation response to abiotic stress in plants. Plant phosphoproteomics: methods and protocols, 17-43. https://doi.org/10.1007/978-1-0716-1016-9_2
De Zélicourt, A., Colcombet, J., and Hirt, H. (2016). The role of MAPK modules and ABA during abiotic stress signaling. Trends in plant science 21, 677-685. https://doi.org/10.1016/j.tplants.2016.04.007
Duque, A. S., de Almeida, A. M., da Silva, A. B., da Silva, J. M., Farinha, A. P., Santos, D., Fevereiro, P., and de Sousa Araújo, S. (2013). Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive. In "Abiotic stress-plant responses and applications in agriculture". IntechOpen. https://doi.org/10.5772/45844
Fàbregas, N., Yoshida, T., and Fernie, A. R. (2020). Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants. Nature communications 11, 6184. https://doi.org/10.1038/s41467-020-19972-8
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. M. (2009). Plant drought stress: effects, mechanisms and management. In "Sustainable agriculture", pp. 153-188. Springer. https://doi.org/10.1007/978-90-481-2666-8_12
Feng, X., Liu, R., Li, C., Zhang, H., and Slot, M. (2023). Contrasting responses of two C4 desert shrubs to drought but consistent decoupling of photosynthesis and stomatal conductance at high temperature. Environmental and Experimental Botany 209, 105295. https://doi.org/10.1016/j.envexpbot.2023.105295
Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., and Vicente, O. (2015). Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Frontiers in Plant Science 6, 978. https://doi.org/10.3389/fpls.2015.00978
Fujita, Y., Yoshida, T., and Yamaguchi‐Shinozaki, K. (2013). Pivotal role of the AREB/ABF‐SnRK2 pathway in ABRE‐mediated transcription in response to osmotic stress in plants. Physiologia plantarum 147, 15-27. https://doi.org/10.1111/j.1399-3054.2012.01635.x
Gan, P., Liu, F., Li, R., Wang, S., and Luo, J. (2019). Chloroplasts—beyond energy capture and carbon fixation: tuning of photosynthesis in response to chilling stress. International Journal of Molecular Sciences 20, 5046. https://doi.org/10.3390/ijms20205046
Ganie, S. A., and Reddy, A. S. (2021). Stress-induced changes in alternative splicing landscape in rice: functional significance of splice isoforms in stress tolerance. Biology 10, 309. https://doi.org/10.3390/biology10040309
Geiman, T. M., and Robertson, K. D. (2002). Chromatin remodeling, histone modifications, and DNA methylation—how does it all fit together? Journal of cellular biochemistry 87, 117-125.
Giulietti, S., Bigini, V., and Savatin, D. V. (2024). ROS and RNS production, subcellular localization, and signaling triggered by immunogenic danger signals. Journal of Experimental Botany 75, 4512-4534. https://doi.org/10.1093/jxb/erae235
Gorgues, L., Li, X., Maurel, C., Martinière, A., and Nacry, P. (2022). Root osmotic sensing from local perception to systemic responses. Stress Biology 2, 36. https://doi.org/10.1007/s44154-022-00049-4
Gull, A., Lone, A. A., and Wani, N. U. I. (2019). Biotic and abiotic stresses in plants. In "Abiotic and biotic stress in plants". IntechOpen. https://doi.org/10.5772/intechopen.88886
Haak, D. C., Fukao, T., Grene, R., Hua, Z., Ivanov, R., Perrella, G., and Li, S. (2017). Multilevel regulation of abiotic stress responses in plants. Frontiers in plant science 8, 1564. https://doi.org/10.3389/fpls.2017.01564
Ho, S. N. (2006). Intracellular water homeostasis and the mammalian cellular osmotic stress response. Journal of cellular physiology 206, 9-15. https://doi.org/10.1002/jcp.20492
Hussain, Q., Asim, M., Zhang, R., Khan, R., Farooq, S., and Wu, J. (2021a). Transcription factors interact with ABA through gene expression and signaling pathways to mitigate drought and salinity stress. Biomolecules 11, 1159. https://doi.org/10.3390/biom11081159
Hussain, S. S., Kayani, M. A., and Amjad, M. (2011). Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnology progress 27, 297-306. https://doi.org/10.1002/btpr.514
Hussain, T., Li, J., Feng, X., Asrar, H., Gul, B., and Liu, X. (2021b). Salinity induced alterations in photosynthetic and oxidative regulation are ameliorated as a function of salt secretion. Journal of plant research 134, 779-796. https://doi.org/10.1007/s10265-021-01276-0
Iqbal, N., Khan, N. A., Ferrante, A., Trivellini, A., Francini, A., and Khan, M. (2017). Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Frontiers in plant science 8, 475. https://doi.org/10.3389/fpls.2017.00475
Jan, R., Hussain, A., Assad, A., Khurshid, S., and Macha, M. A. (2025). Challenges with multi-omics data integration. In "Multi-Omics Technology in Human Health and Diseases", pp. 223-242. Elsevier. https://doi.org/10.1016/B978-0-443-18606-3.00010-5
Jiang, C., and Fu, X. (2007). GA action: turning on de-DELLA repressing signaling. Current opinion in plant biology 10, 461-465. https://doi.org/10.1016/j.pbi.2007.07.005
Joyce, J. (2023). Exploring the Molecular Mechanisms of Aphid and Thrips Perception in Arabidopsis thaliana, University of East Anglia.
Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., and Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International journal of molecular sciences 22, 4642. https://doi.org/10.3390/ijms22094642
Kacperska, A. (2004). Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiologia Plantarum 122, 159-168. https://doi.org/10.1111/j.1399-3054.2004.00393.x
Kamali, S., and Singh, A. (2023). Genomic and transcriptomic approaches to developing abiotic stress-resilient crops. Agronomy 13, 2903. https://doi.org/10.3390/agronomy13122903
Karmakar, S., Dutta, D., Kumari, A., and Kant, L. (2021). Comprehensive strategy to achieve drought tolerance in plants. Climate Change and Environmental Sustainability 9, 233-242. https://doi.org/10.5958/2231-5131.2021.00034.3
Kathuria, P. (2024). TOLERANCE OR RESISTANCE BREEDING: PATH FORWARD FOR TO TACKLE ABIOTIC STRESS. Amalgamation of Recent Efforts in Plant Breeding and Biotechnology, 75.
Kennelly, M., O’Mara, J., Rivard, C., Miller, G. L., and Smith, D. (2012). Introduction to abiotic disorders in plants. The Plant Health Instructor 10, 10-20. https://doi.org/10.1094/PHI-I-2012-10-29-01
Khalid, M. F., Huda, S., Yong, M., Li, L., Li, L., Chen, Z.-H., and Ahmed, T. (2023). Alleviation of drought and salt stress in vegetables: crop responses and mitigation strategies. Plant Growth Regulation 99, 177-194. https://doi.org/10.1007/s10725-022-00888-7
Khan, A. A., Iqbal, B., Jalal, A., Khan, K. A., Al-Andal, A., Khan, I., Suboktagin, S., Qayum, A., and Elboughdiri, N. (2024). Advanced Molecular approaches for improving crop yield and quality: a review. Journal of Plant Growth Regulation 43, 2091-2103. https://doi.org/10.1007/s00344-023-10995-3
KhokharVoytas, A., Shahbaz, M., Maqsood, M. F., Zulfiqar, U., Naz, N., Iqbal, U. Z., Sara, M., Aqeel, M., Khalid, N., and Noman, A. (2023). Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change. Functional & integrative genomics 23, 283. https://doi.org/10.1007/s10142-023-01056-2
Kopecká, R., Kameniarová, M., Černý, M., Brzobohatý, B., and Novák, J. (2023). Abiotic stress in crop production. International Journal of Molecular Sciences 24, 6603. https://doi.org/10.3390/ijms24136603
Korek, M., Mehta, D., Uhrig, G. R., Daszkowska-Golec, A., Novak, O., Buchcik, W., and Marzec, M. (2025). Strigolactone insensitivity affects the hormonal homeostasis in barley. Scientific Reports 15, 9375. https://doi.org/10.1038/s41598-025-63999-9
Kratsch, H., and Wise, R. R. (2000). The ultrastructure of chilling stress. Plant, Cell & Environment 23, 337-350. https://doi.org/10.1046/j.1365-3040.2000.00551.x
Kulik, A., Wawer, I., Krzywińska, E., Bucholc, M., and Dobrowolska, G. (2011). SnRK2 protein kinases—key regulators of plant response to abiotic stresses. Omics: a journal of integrative biology 15, 859-872. https://doi.org/10.1089/omi.2011.0037
Kumar, R., and Kumar, V. (2016). Physiological disorders in perennial woody tropical and subtropical fruit crops: A review. The Indian Journal of Agricultural Sciences 86, 703-17.
Kumar, S., Sravani, B., Korra, T., Behera, L., Datta, D., Dhakad, P. K., and Yadav, M. (2022). Psychrophilic microbes: biodiversity, beneficial role and improvement of cold stress in crop plants. In "New and future developments in microbial biotechnology and bioengineering", pp. 177-198. Elsevier. https://doi.org/10.1016/B978-0-323-90573-0.00008-5
Kundu, P., Nehra, A., Gill, R., Tuteja, N., and Gill, S. S. (2022). Unraveling the importance of EF-hand-mediated calcium signaling in plants. South African Journal of Botany 148, 615-633. https://doi.org/10.1016/j.sajb.2021.10.004
Kyriakis, J. M., and Avruch, J. (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological reviews. https://doi.org/10.1152/physrev.2001.81.2.807
Li, Y., Rahman, S. U., Qiu, Z., Shahzad, S. M., Nawaz, M. F., Huang, J., Naveed, S., Li, L., Wang, X., and Cheng, H. (2023). Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. Environmental Pollution 325, 121433. https://doi.org/10.1016/j.envpol.2023.121433
Liu, H., Todd, J. L., and Luo, H. (2023). Turfgrass salinity stress and tolerance—A review. Plants 12, 925. https://doi.org/10.3390/plants12040925
Liu, S., Lv, Z., Liu, Y., Li, L., and Zhang, L. (2018). Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genetics and Molecular Biology 41, 624-637. https://doi.org/10.1590/1678-4685-GMB-2018-0044
Ma, X., Zhao, F., and Zhou, B. (2022). The characters of non-coding RNAs and their biological roles in plant development and abiotic stress response. International Journal of Molecular Sciences 23, 4124. https://doi.org/10.3390/ijms23174124
Ma, Y., Tang, M., Wang, M., Yu, Y., and Ruan, B. (2024). Advances in Understanding Drought Stress Responses in Rice: Molecular Mechanisms of ABA Signaling and Breeding Prospects. Genes 15, 1529. https://doi.org/10.3390/genes15091529
Mahdavian, K. (2024). Effects of ultraviolet radiation on plants and their protective mechanisms. Russian Journal of Plant Physiology 71, 184. https://doi.org/10.1007/s10709-024-00165-3
Mansoor, S., Ali, A., Kour, N., Bornhorst, J., AlHarbi, K., Rinklebe, J., Abd El Moneim, D., Ahmad, P., and Chung, Y. S. (2023). Heavy metal induced oxidative stress mitigation and ROS scavenging in plants. Plants 12, 3003. https://doi.org/10.3390/plants12163003
Matsui, A., Nakaminami, K., and Seki, M. (2019). Biological function of changes in RNA metabolism in plant adaptation to abiotic stress. Plant and Cell Physiology 60, 1897-1905. Meena, H., Kiran, B. U., and Bindu, H. (2025). Genetic Enhancement of Abiotic Stress Tolerance in Oilseeds Through Contemporary Breeding Approaches. In "Breeding Climate Resilient and Future Ready Oilseed Crops", pp. 43-99. Springer. https://doi.org/10.1093/pcp/pcz104
Mehrotra, R., Bhalothia, P., Bansal, P., Basantani, M. K., Bharti, V., and Mehrotra, S. (2014). Abscisic acid and abiotic stress tolerance–Different tiers of regulation. Journal of plant physiology 171, 486-496. https://doi.org/10.1016/j.jplph.2014.02.009
Meraj, T. A., Fu, J., Raza, M. A., Zhu, C., Shen, Q., Xu, D., and Wang, Q. (2020). Transcriptional factors regulate plant stress responses through mediating secondary metabolism. Genes 11, 346. https://doi.org/10.3390/genes11030346
Mishra, B., Kumar, N., and Mukhtar, M. S. (2021). Network biology to uncover functional and structural properties of the plant immune system. Current Opinion in Plant Biology 62, 102057. https://doi.org/10.1016/j.pbi.2020.102057
Mondal, N. S., and Ghosh, A. R. (2024). Global Climate Change and Ecosystem Services: An Indian Perspective. Ecosystem Management: Climate Change and Sustainability, 171-203.
Morillo, S. A., and Tax, F. E. (2006). Functional analysis of receptor-like kinases in monocots and dicots. Current opinion in plant biology 9, 460-469. https://doi.org/10.1016/j.pbi.2006.06.011
Mosadegh, H. (2018). Secondary metabolite regulation and UV-B tolerance mechanisms in Ocimum basilicum Var. Genovese.
Moustafa, K., AbuQamar, S., Jarrar, M., Al-Rajab, A. J., and Trémouillaux-Guiller, J. (2014). MAPK cascades and major abiotic stresses. Plant cell reports 33, 1217-1225. https://doi.org/10.1007/s00299-014-1620-3
Msanne, J., Lin, J., Stone, J. M., and Awada, T. (2011). Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta 234, 97-107. https://doi.org/10.1007/s00425-011-1415-5
Mudrilov, M., Ladeynova, M., Grinberg, M., Balalaeva, I., and Vodeneev, V. (2021). Electrical signaling of plants under abiotic stressors: transmission of stimulus-specific information. International Journal of Molecular Sciences 22, 10715. https://doi.org/10.3390/ijms222010715
Muhammad Aslam, M., Waseem, M., Jakada, B. H., Okal, E. J., Lei, Z., Saqib, H. S. A., Yuan, W., Xu, W., and Zhang, Q. (2022). Mechanisms of abscisic acid-mediated drought stress responses in plants. International journal of molecular sciences 23, 1084. https://doi.org/10.3390/ijms23031084
Nadeem, H., Amir, K., Gupta, R., Hashem, M., Alamri, S., Siddiqui, M. A., and Ahmad, F. (2023). Stress combination: When two negatives may become antagonistic, synergistic or additive for plants? Pedosphere 33, 287-300 https://doi.org/10.1016/S1002-0160(23)60151-8
Nakashima, K., and Yamaguchi-Shinozaki, K. (2013). ABA signaling in stress-response and seed development. Plant cell reports 32, 959-970. https://doi.org/10.1007/s00299-013-1474-3
Naz, M., Afzal, M. R., Raza, M. A., Pandey, S., Qi, S., Dai, Z., and Du, D. (2024). Calcium (Ca2+) signaling in plants: A plant stress perspective. South African Journal of Botany 169, 464-485. https://doi.org/10.1016/j.sajb.2024.01.092
Nazareth, T. d. M., Soriano Pérez, E., Luz, C., Meca, G., and Quiles, J. M. (2024). Comprehensive review of aflatoxin and ochratoxin a dynamics: Emergence, toxicological impact, and advanced control strategies. Foods 13, 1920. https://doi.org/10.3390/foods13121920
Novikova, G., Moshkov, I., and Los, D. (2007). Protein sensors and transducers of cold and osmotic stress in cyanobacteria and plants. Molecular Biology 41, 427-437. https://doi.org/10.1134/S0026893307050080
Nowicka, B. (2022). Heavy metal–induced stress in eukaryotic algae—mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environmental Science and Pollution Research 29, 16860-16911. https://doi.org/10.1007/s11356-021-16524-5
Oguz, M. C., Aycan, M., Oguz, E., Poyraz, I., and Yildiz, M. (2022). Drought stress tolerance in plants: Interplay of molecular, biochemical and physiological responses in important development stages. Physiologia 2, 180-197. https://doi.org/10.3390/physiologia2030014
Pamungkas, S. S. T., and Farid, N. (2022). Drought stress: responses and mechanism in plants. Reviews in Agricultural Science 10, 168-185. https://doi.org/10.1016/j.ras.2022.07.002
Pandita, D., and Pandita, A. (2023). "Plant MicroRNAs and stress response," CRC Press.
Parray, R. A. (2019). Genetic studies for improving yield under drought stress environments in rice of Assam, Assam Agricultural University Jorhat.
Parvathy, S. T. (2018). Versatile roles of ubiquitous calcium-dependent protein kinases (CDPKs) in plants. Indian Soc. Oilseeds Res 35, 1-11.
Pearce, R. S. (2001). Plant freezing and damage. Annals of botany 87, 417-424. https://doi.org/10.1006/anbo.2000.1298
Perfus‐Barbeoch, L., Leonhardt, N., Vavasseur, A., and Forestier, C. (2002). Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal 32, 539-548. https://doi.org/10.1046/j.1365-313X.2002.01498.x
Pivato, M. (2023). The molecular basis of Chlamydomonas reinhardtii responses to the environment: the role of intracellular Ca2+ signalling and minor antenna proteins.
Praveena, K., and Malaisamy, A. (2024). Climatic shifts and agricultural strategies: A thorough review on impact of climate change on food security and crop productivity. Int. J. Environ. Clim. Change 14, 817-831.
Qi, X., Wang, X., Wang, Q., Li, M., Ma, L., Li, Y., Li, X., and Wang, L. (2021). Photosynthesis, stomatal conductance, endogenous hormones and organic acid synergistic regulation in leaves of rice (Oryza sativa L.) under elevated CO 2. Applied Ecology & Environmental Research 19. https://doi.org/10.15666/aeer/1904_433341
Qiao, M., Hong, C., Jiao, Y., Hou, S., and Gao, H. (2024). Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants 13, 1808. https://doi.org/10.3390/plants13191808
Qin, F., Sakuma, Y., Tran, L.-S. P., Maruyama, K., Kidokoro, S., Fujita, Y., Fujita, M., Umezawa, T., Sawano, Y., and Miyazono, K.-i. (2008). Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–responsive gene expression. The Plant Cell 20, 1693-1707. https://doi.org/10.1105/tpc.108.058519
Rai, K. K., Pandey, N., Rai, N., Rai, S. K., and Pandey-Rai, S. (2021). Salicylic acid and nitric oxide: insight into the transcriptional regulation of their metabolism and regulatory functions in plants. Frontiers in Agronomy 3, 781027. https://doi.org/10.3389/fagro.2021.781027
Ramegowda, V., and Senthil-Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. Journal of plant physiology 176, 47-54. https://doi.org/10.1016/j.jplph.2015.05.009
Rasheed, A., Gill, R. A., Hassan, M. U., Mahmood, A., Qari, S., Zaman, Q. U., Ilyas, M., Aamer, M., Batool, M., and Li, H. (2021). A critical review: recent advancements in the use of CRISPR/Cas9 technology to enhance crops and alleviate global food crises. Current Issues in Molecular Biology 43, 1950-1976. https://doi.org/10.3390/cimb43030103
Rastogi, R. P., Richa, n., Kumar, A., Tyagi, M. B., and Sinha, R. P. (2010). Molecular mechanisms of ultraviolet radiation‐induced DNA damage and repair. Journal of nucleic acids 2010, 592980. https://doi.org/10.1155/2010/592980
Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., and Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 8, 34. https://doi.org/10.3390/plants8050034
Razzaq, M. K., Aleem, M., Mansoor, S., Khan, M. A., Rauf, S., Iqbal, S., and Siddique, K. H. (2021). Omics and CRISPR-Cas9 approaches for molecular insight, functional gene analysis, and stress tolerance development in crops. International journal of molecular sciences 22, 1292. https://doi.org/10.3390/ijms22031292
Rehman, S., and Mahmood, T. (2015). Functional role of DREB and ERF transcription factors: regulating stress-responsive network in plants. Acta Physiologiae Plantarum 37, 1-14. https://doi.org/10.1007/s11738-015-1918-7
Roychoudhury, A., Paul, S., and Basu, S. (2013). Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant cell reports 32, 985-1006. https://doi.org/10.1007/s00299-013-1428-1
Saber Sichani, A., Ranjbar, M., Baneshi, M., Torabi Zadeh, F., and Fallahi, J. (2023). A review on advanced CRISPR-based genome-editing tools: base editing and prime editing. Molecular Biotechnology 65, 849-860. https://doi.org/10.1007/s12033-023-00739-9
Saleem, M. H., Noreen, S., Ishaq, I., Saleem, A., Khan, K. A., Ercisli, S., Anas, M., Khalid, A., Ahmed, T., and Hassan, A. (2025). Omics technologies: unraveling abiotic stress tolerance mechanisms for sustainable crop improvement. Journal of Plant Growth Regulation, 1-23. https://doi.org/10.1007/s00344-024-11021-1
Sanches, P. H. G., de Melo, N. C., Porcari, A. M., and de Carvalho, L. M. (2024). Integrating molecular perspectives: strategies for comprehensive multi-omics integrative data analysis and machine learning applications in transcriptomics, proteomics, and metabolomics. Biology 13, 848. https://doi.org/10.3390/biology13100848
Santisree, P., Jalli, L. C. L., Bhatnagar‐Mathur, P., and Sharma, K. K. (2020). Emerging roles of salicylic acid and jasmonates in plant abiotic stress responses. Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives, 342-373.
Satrio, R. D., Fendiyanto, M. H., and Miftahudin, M. (2024). Tools and techniques used at global scale through genomics, transcriptomics, proteomics, and metabolomics to investigate plant stress responses at the molecular level. In "Molecular Dynamics of Plant Stress and its Management", pp. 555-607. Springer.
Scandalios, J. (2005). Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian journal of medical and biological research 38, 995-1014. https://doi.org/10.1590/S0100-879X2005000700002
Schieber, M., and Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current biology 24, R453-R462. https://doi.org/10.1016/j.cub.2014.03.034
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., and Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10, 259. https://doi.org/10.3390/plants10020259
Sharma, M., Sidhu, A. K., Samota, M. K., Gupta, M., Koli, P., and Choudhary, M. (2023). Post-translational modifications in histones and their role in abiotic stress tolerance in plants. Proteomes 11, 38. https://doi.org/10.3390/proteomes11020038
Sharma, P., Jha, A. B., and Dubey, R. S. (2019). Oxidative stress and antioxidative defense system in plants growing under abiotic stresses. In "Handbook of Plant and Crop Stress, Fourth Edition", pp. 93-136. CRC press.
Sharma, S., Chatterjee, S., Kataria, S., Joshi, J., Datta, S., Vairale, M. G., and Veer, V. (2017). A review on responses of plants to UV‐B radiation related stress. UV‐B Radiation: From Environmental Stressor to Regulator of Plant Growth, 75-97. https://doi.org/10.1038/s41580-022-00457-5
Shelake, R. M., Kadam, U. S., Kumar, R., Pramanik, D., Singh, A. K., and Kim, J.-Y. (2022). Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. Plant Communications 3. https://doi.org/10.1016/j.xplc.2022.100363
Shvedunova, M., and Akhtar, A. (2022). Modulation of cellular processes by histone and non-histone protein acetylation. Nature reviews Molecular cell biology 23, 329-349. https://doi.org/10.1038/s41580-022-00457-5
Singh, A., Sagar, S., and Biswas, D. K. (2017). Calcium dependent protein kinase, a versatile player in plant stress management and development. Critical Reviews in Plant Sciences 36, 336-352. https://doi.org/10.1080/07352689.2017.1408996
Singh, A. H., Wolf, D. M., Wang, P., and Arkin, A. P. (2008). Modularity of stress response evolution. Proceedings of the National Academy of Sciences 105, 7500-7505. https://doi.org/10.1073/pnas.0802578105
Singh, D., and Laxmi, A. (2015). Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in plant science 6, 895. https://doi.org/10.3389/fpls.2015.00895
Singh, R. K., Sood, P., Prasad, A., and Prasad, M. (2021). Advances in omics technology for improving crop yield and stress resilience. Plant Breeding 140, 719-731. https://doi.org/10.1111/pbr.12946
Srivastava, H., Ferrell, D., and Popescu, G. V. (2022). NetSeekR: a network analysis pipeline for RNA-Seq time series data. BMC bioinformatics 23, 54. https://doi.org/10.1186/s12859-021-04578-9
Tanveer, M., and Shabala, S. (2020). Neurotransmitters in signalling and adaptation to salinity stress in plants. Neurotransmitters in plant signaling and communication, 49-73.
Tripathy, K. P., Mukherjee, S., Mishra, A. K., Mann, M. E., and Williams, A. P. (2023). Climate change will accelerate the high-end risk of compound drought and heatwave events. Proceedings of the National Academy of Sciences 120, e2219825120. https://doi.org/10.1073/pnas.2219825120
Ul Hassan, M., Rasool, T., Iqbal, C., Arshad, A., Abrar, M., Abrar, M. M., Habib-ur-Rahman, M., Noor, M. A., Sher, A., and Fahad, S. (2021). Linking plants functioning to adaptive responses under heat stress conditions: a mechanistic review. Journal of Plant Growth Regulation, 1-18. https://doi.org/10.1007/s00344-020-10224-z
Vakulabaranam Sridharan, S. (2015). Biological Pathways Based Approaches to Model and Control Gene Regulatory Networks.
Villalobos-López, M. A., Arroyo-Becerra, A., Quintero-Jiménez, A., and Iturriaga, G. (2022). Biotechnological advances to improve abiotic stress tolerance in crops. International Journal of Molecular Sciences 23, 12053. https://doi.org/10.3390/ijms232012053
Wang, P., and Song, C.-P. (2008). Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytologist 178.
Wang, S., Yao, Y., Wang, J., Ruan, B., and Yu, Y. (2025). Advancing Stress-Resilient Rice: Mechanisms, Genes, and Breeding Strategies. Agriculture 15, 721. https://doi.org/10.3390/agriculture15040721
Wang, Y., Mostafa, S., Zeng, W., and Jin, B. (2021). Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. International Journal of Molecular Sciences 22, 8568.
Wang, Z., and Dane, F. (2013). NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway. Acta physiologiae plantarum 35, 1397-1408. https://doi.org/10.1007/s11738-013-1323-4
Xiao, B.-Z., Chen, X., Xiang, C.-B., Tang, N., Zhang, Q.-F., and Xiong, L.-Z. (2009). Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Molecular Plant 2, 73-83. https://doi.org/10.1093/mp/ssn062
Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., and Cai, Y. (2019). The roles of environmental factors in regulation of oxidative stress in plant. BioMed research international 2019, 9732325. https://doi.org/10.1155/2019/9732325
Yadav, C., Rawat, N., Singla‐Pareek, S. L., and Pareek, A. (2025). Knockdown of OsPHP1 leads to improved yield under salinity and drought in rice via regulating the complex Set of TCS members and cytokinin signalling. Plant, Cell & Environment 48, 2769-2782. https://doi.org/10.1111/pce.14819
Yadav, S., Irfan, M., Ahmad, A., and Hayat, S. (2011). Causes of salinity and plant manifestations to salt stress: a review. Journal of environmental biology 32, 667.
Yadav, S., Yadav, J., Kumar, S., and Singh, P. (2024). Metabolism of Macro-elements (Calcium, Magnesium, Sodium, Potassium, Chloride and Phosphorus) and Associated Disorders. In "Clinical Applications of Biomolecules in Disease Diagnosis: A Comprehensive Guide to Biochemistry and Metabolism", pp. 177-203. Springer.
Yoshida, T., Fujita, Y., Maruyama, K., Mogami, J., Todaka, D., Shinozaki, K., and Yamaguchi‐Shinozaki, K. (2015). Four A rabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant, cell & environment 38, 35-49. https://doi.org/10.1111/pce.12468
Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T., and Krichilsky, B. (2014). OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367-371. https://doi.org/10.1038/nature13793
Yue, J., and López, J. M. (2020). Understanding MAPK signaling pathways in apoptosis. International journal of molecular sciences 21, 2346. https://doi.org/10.3390/ijms21072346
Zha, D., He, Y., and Song, J. (2025). Regulatory role of ABA‐responsive element binding factors in plant abiotic stress response. Physiologia Plantarum 177, e70233. https://doi.org/10.1111/ppl.13823
Zhu, J.-K. (2016). Abiotic stress signaling and responses in plants. Cell 167, 313-324. https://doi.org/10.1016/j.cell.2016.01.004
Zhu, Q., Gao, S., and Zhang, W. (2021). Identification of key transcription factors related to bacterial spot resistance in pepper through regulatory network analyses. Genes 12, 1351.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2026 M HAMMAD, M SHAFIQ, A BATOOL, SHUH SHERAZI

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



