CLIMATE-RESILIENT HORTICULTURE THROUGH GENOMIC TOOLS: A DECADE OF GENOME-WIDE ASSOCIATION STUDIES (GWAS) APPLICATIONS AMIDST A CHANGING CLIMATE

Authors

DOI:

https://doi.org/10.64013/bbasr.v2026i1.115

Keywords:

GWAS, climate resilience, horticulture, abiotic stress, tomato, cucumber, drought tolerance, heat tolerance, salinity, genomic selection

Abstract

Climate change offers a growing danger to global horticulture productivity, with rising temperatures, shifting precipitation patterns, and increased soil salinity. However, throughout the last decade, the GWAS era has revolutionized our understanding of genetic architecture for abiotic stress tolerance in horticulture crops. This study outlines GWAS research development from 2015 to 2025, focusing on drought, heat, and salinity tolerance in horticulture crops. Some of the significant highlights are the finding of stable loci such as SlALMT15 in tomato for stomatal function, QTL for tuber heat tolerance in potato, and salt-tolerant genes in cucumber seedlings. Integration with transcriptomics, phenomics, and genomic selection has accelerated candidate gene validation and breeding applications. Despite these advancements, critical challenges remain—limited sample sizes, inconsistent phenotyping, underrepresentation of orphan crops, and the need for multi-environment trials. Abiotic stressors account for 50-80% of the potential yield loss of numerous horticulture crops, according to global studies conducted between 2010 and 2025. The combination of multi-omics and AI-assisted genomic prediction has increased the effectiveness of GWAS-based trait identification in plant breeding research. This review also explores the role of international consortia, community genomics databases, and data-sharing protocols in enhancing GWAS effectiveness. By aligning genomics, phenotyping, and breeding, GWAS serves as a transformative approach for developing climate-smart horticultural cultivars. Strengthening global collaboration, expanding diversity panels, and applying advanced analytics are key to building future-resilient food systems.

Downloads

Download data is not yet available.

References

Agler, C. S., Shungin, D., Ferreira Zandoná, A. G., Schmadeke, P., Basta, P. V., Luo, J., Cantrell, J., Pahel Jr, T. D., Meyer, B. D., and Shaffer, J. R. (2019). Protocols, methods, and tools for genome-wide association studies (GWAS) of dental traits. In "Odontogenesis: Methods and Protocols", pp. 493-509. Springer. https://doi.org/10.1007/978-1-4939-9078-4_28

Ameen, M., Mahmood, A., Ahmad, M., Mansoor Javaid, M., Nadeem, M. A., Asif, M., Balal, R. M., and Khan, B. A. (2023). Impacts of climate change on fruit physiology and quality. In "Climate-resilient agriculture, vol 1: crop responses and agroecological perspectives", pp. 93-124. Springer. https://doi.org/10.1007/978-3-031-33370-4_4

Amin, A., Zaman, W., and Park, S. (2025). Harnessing Multi-Omics and Predictive Modeling for Climate-Resilient Crop Breeding: From Genomes to Fields. Genes 16, 809. https://doi.org/10.3390/genes16050809

Amuji, C. F. (2020). Impact of climate change on horticultural species, with special emphasis on West Africa, Macquarie University.

Angidi, S., Madankar, K., Tehseen, M. M., and Bhatla, A. (2025). Advanced High-Throughput Phenotyping Techniques for Managing Abiotic Stress in Agricultural Crops—A Comprehensive Review. Crops 5, 8. https://doi.org/10.3390/crops5010008

Anisimov, B. V. e., Zhevora, S. V., and Oves, E. V. e. (2021). Damage to Tubers Caused by Scab and Crater Rot, Defects Caused by Physiological Disorders Under the Influence of Abnormal Conditions, and Damages, Injuries, Diseases, and Pests of Quarantine Significance. In "Potato Seed Production", pp. 101-108. Springer. https://doi.org/10.1007/978-3-030-70100-0_8

Biratu, W. (2018). Review on the effect of climate change on tomato (Solanum lycopersicon) production in Africa and mitigation strategies. J Nat Sci Res 8, 2225-0921.

Brinkley, S., Gallo-Franco, J. J., Vázquez-Manjarrez, N., Chaura, J., Quartey, N. K., Toulabi, S. B., Odenkirk, M. T., Jermendi, E., Laporte, M.-A., and Lutterodt, H. E. (2025). The state of food composition databases: data attributes and FAIR data harmonization in the era of digital innovation. Frontiers in Nutrition 12, 1552367. https://doi.org/10.3389/fnut.2025.1552367

Byun, J., Han, Y., Gorlov, I. P., Busam, J. A., Seldin, M. F., and Amos, C. I. (2017). Ancestry inference using principal component analysis and spatial analysis: a distance-based analysis to account for population substructure. BMC genomics 18, 789. https://doi.org/10.1186/s12864-017-4157-8

Cavusoglu, E., Sari, U., and Tiryaki, I. (2023). Genome‐wide identification and expression analysis of Na+/H+ antiporter (NHX) genes in tomato under salt stress. Plant Direct 7, e543. https://doi.org/10.1002/pld3.543

Çelik, S. (2024). Gene expression analysis of potato drought-responsive genes under drought stress in potato (Solanum tuberosum L.) cultivars. PeerJ 12, e17116. https://doi.org/10.7717/peerj.17116

Chen, C., Yu, W., Xu, X., Wang, Y., Wang, B., Xu, S., Lan, Q., and Wang, Y. (2024). Research advancements in salt tolerance of cucurbitaceae: From salt response to molecular mechanisms. International Journal of Molecular Sciences 25, 9051. https://doi.org/10.3390/ijms25219051

Chen, F., Song, Y., Li, X., Chen, J., Mo, L., Zhang, X., Lin, Z., and Zhang, L. (2019). Genome sequences of horticultural plants: past, present, and future. Horticulture research 6. https://doi.org/10.1038/s41438-019-0225-0

Chen, J.-T. (2024). "Plant Speed Breeding and High-throughput Technologies," CRC Press. https://doi.org/10.1201/9781003272118

Chen, X., Wang, Z., Tang, R., Wang, L., Chen, C., and Ren, Z. (2021). Genome-wide identification and expression analysis of Hsf and Hsp gene families in cucumber (Cucumis sativus L.). Plant Growth Regulation 95, 223-239. https://doi.org/10.1007/s10725-020-00642-6

Compagnucci, L., and Spigarelli, F. (2018). Fostering cross-sector collaboration to promote innovation in the water sector. Sustainability 10, 4154. https://doi.org/10.3390/su100204154

Conesa, A., and Götz, S. (2008). Blast2GO: a comprehensive suite for functional analysis in plant genomics. International journal of plant genomics 2008, 619832. https://doi.org/10.1155/2008/619832

COST, R. (2025). Integrative approaches to enhance reproductive resilience of crops for climate-proof agriculture. Plant stress 15. https://doi.org/10.1016/j.stress.2025.100401

D’Agostino, N., and Tripodi, P. (2017). NGS-based genotyping, high-throughput phenotyping and genome-wide association studies laid the foundations for next-generation breeding in horticultural crops. Diversity 9, 38. https://doi.org/10.3390/d9030038

Delrot, S., Grimplet, J., Carbonell-Bejerano, P., Schwandner, A., Bert, P.-F., Bavaresco, L., Costa, L. D., Di Gaspero, G., Duchêne, E., and Hausmann, L. (2020). Genetic and genomic approaches for adaptation of grapevine to climate change. In "Genomic designing of climate-smart fruit crops", pp. 157-270. Springer. https://doi.org/10.1007/978-3-030-29408-3_5

Des Marais, D. L., Hernandez, K. M., and Juenger, T. E. (2013). Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annual Review of Ecology, Evolution, and Systematics 44, 5-29. https://doi.org/10.1146/annurev-ecolsys-110512-135806

Dixit, S., Sivalingam, P. N., Baskaran, R. M., Senthil-Kumar, M., and Ghosh, P. K. (2024). Plant responses to concurrent abiotic and biotic stress: unravelling physiological and morphological mechanisms. Plant Physiology Reports 29, 6-17. https://doi.org/10.1007/s40502-023-00752-0

Dos Santos, T. B., Ribas, A. F., de Souza, S. G. H., Budzinski, I. G. F., and Domingues, D. S. (2022). Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses 2, 113-135. https://doi.org/10.3390/stresses2010010

Elsafy, M. (2025). Genomic insights for sesame improvement. Acta Universitatis Agriculturae Sueciae.

Farooq, M. A., Gao, S., Hassan, M. A., Huang, Z., Rasheed, A., Hearne, S., Prasanna, B., Li, X., and Li, H. (2024). Artificial intelligence in plant breeding. Trends in Genetics 40, 891-908. https://doi.org/10.1016/j.tig.2024.06.002

Flanagan, S. P., Forester, B. R., Latch, E. K., Aitken, S. N., and Hoban, S. (2018). Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evolutionary applications 11, 1035-1052. https://doi.org/10.1111/eva.1252

Gaikwad, S. Towards Climate-Resilient Agriculture: Recalibrating Research Priorities and Bridging Gaps in Agricultural Innovation in Response to Climate Change—An Indian and Global Perspective.

Gerullis, M., Pieruschka, R., Fahrner, S., Hartl, L., Schurr, U., and Heckelei, T. (2023). From genes to policy: mission-oriented governance of plant-breeding research and technologies. Frontiers in plant science 14, 1235175. https://doi.org/10.3389/fpls.2023.1235175

Glenn, D. M., Kim, S. H., Ramirez‐Villegas, J., and Läderach, P. (2013). Response of perennial horticultural crops to climate change. Horticultural Reviews Volume 41, 47-130. https://doi.org/10.1002/9781118707413.ch2

Gora, J. S., Verma, A. K., Singh, J., and Choudhary, D. R. (2019). Climate change and production of horticultural crops. In "Agricultural Impacts of Climate Change [Volume 1]", pp. 45-61. CRC Press. https://doi.org/10.1201/9780429057691-3

Guo, Y., Li, S., García-Caparros, P., Wang, L., and Liang, Z. (2025). Grapevine adaptation to cold and heat stress. Journal of Experimental Botany, eraf158. https://doi.org/10.1093/jxb/eraf158

Hafeez, A., Ali, B., Javed, M. A., Saleem, A., Fatima, M., Fathi, A., Afridi, M. S., Aydin, V., Oral, M. A., and Soudy, F. A. (2023). Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics‐assisted breeding. Planta 258, 97. https://doi.org/10.1007/s00425-023-04221-7

Harris, L., McDonagh, E. M., Zhang, X., Fawcett, K., Foreman, A., Daneck, P., Sergouniotis, P. I., Parkinson, H., Mazzarotto, F., and Inouye, M. (2024). Genome-wide association testing beyond SNPs. Nature Reviews Genetics, 1-15. https://doi.org/10.1038/s41576-024-00704-5

Hasan, M. M., Rafii, M. Y., Ismail, M. R., Mahmood, M., Rahim, H. A., Alam, M. A., Ashkani, S., Malek, M. A., and Latif, M. A. (2015). Marker-assisted backcrossing: a useful method for rice improvement. Biotechnology & Biotechnological Equipment 29, 237-254. https://doi.org/10.1080/13102818.2014.995920

Henderson, S. W., Baumann, U., Blackmore, D. H., Walker, A. R., Walker, R. R., and Gilliham, M. (2014). Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC plant biology 14, 273. https://doi.org/10.1186/s12870-014-0273-8

Hereil, A. (2024). Deciphering the Genetic Architecture of Abiotic Stress Tolerance in Tomato through GWAS and Genomic Prediction, Université d'Avignon.

Hoegh-Guldberg, O., Jacob, D., Taylor, M., Guillén Bolaños, T., Bindi, M., Brown, S., Camilloni, I. A., Diedhiou, A., Djalante, R., and Ebi, K. (2019). The human imperative of stabilizing global climate change at 1.5 C. Science 365, eaaw6974. https://doi.org/10.1126/science.aaw6974

Hong, E. P., and Park, J. W. (2012). Sample size and statistical power calculation in genetic association studies. Genomics & informatics 10, 117. https://doi.org/10.5808/GI.2012.10.2.117

Hu, Y., Xie, S., and Yao, J. (2016). Identification of novel reference genes suitable for qRT-PCR normalization with respect to the zebrafish developmental stage. Plos one 11, e0149277. https://doi.org/10.1371/journal.pone.0149277

Huang, W. (2024). The current situation and future of using GWAS strategies to accelerate the improvement of crop stress resistance traits. Molecular Plant Breeding 15.

Husen, A., and Ahmad, A. (2023). "Genomics, transcriptomics, proteomics and metabolomics of crop plants," Elsevier. https://doi.org/10.1016/C2021-0-03239-3

Inau, E. T., Sack, J., Waltemath, D., and Zeleke, A. A. (2023). Initiatives, concepts, and implementation practices of the findable, accessible, interoperable, and reusable data principles in health data stewardship: scoping review. Journal of Medical Internet Research 25, e45013. https://doi.org/10.2196/45013

Jackson, M. C., Pawar, S., and Woodward, G. (2021). The temporal dynamics of multiple stressor effects: from individuals to ecosystems. Trends in Ecology & Evolution 36, 402-410.

Jackson, M. T., Borja Tome, M. J., and Ford-Lloyd, B. (2017). Evaluation of CGIAR research support program for Managing and Sustaining Crop Collections: Genebanks CRP. Summary Report. https://doi.org/10.1016/j.tree.2021.01.004

Jiang, D., and Wang, M. (2018). Recent developments in statistical methods for GWAS and high-throughput sequencing association studies of complex traits. Biostatistics & Epidemiology 2, 132-159. https://doi.org/10.1080/24709360.2018.1535905

Keys, E., and McConnell, W. J. (2005). Global change and the intensification of agriculture in the tropics. Global environmental change 15, 320-337. https://doi.org/10.1016/j.gloenvcha.2005.04.004

Kole, C. (2013). "Genomics and breeding for climate-resilient crops," Springer. https://doi.org/10.1007/978-3-642-37045-8

Lazarević, B., Šatović, Z., Nimac, A., Vidak, M., Gunjača, J., Politeo, O., and Carović-Stanko, K. (2021). Application of phenotyping methods in detection of drought and salinity stress in basil (Ocimum basilicum L.). Frontiers in Plant Science 12, 629441. https://doi.org/10.3389/fpls.2021.629441

Leng, X., Li, C., Wang, P., Ren, Y., Chen, J., Liu, G., Hakeem, A., Liu, Y., Shi, X., and Hou, T. (2025). The transcription factor VvMYB44-1 plays a role in reducing grapevine anthocyanin biosynthesis at high temperature. Plant Physiology 197, kiae657. https://doi.org/10.1093/plphys/kiae657

Lindqvist-Kreuze, H., Bonierbale, M., Grüneberg, W. J., Mendes, T., De Boeck, B., and Campos, H. (2024). Potato and sweetpotato breeding at the international potato center: approaches, outcomes and the way forward. Theoretical and Applied Genetics 137, 12. https://doi.org/10.1007/s00122-023-04385-7

Liu, D., Dong, S., Miao, H., Liu, X., Li, C., Han, J., Zhang, S., and Gu, X. (2022). A large-scale genomic association analysis identifies the candidate genes regulating salt tolerance in cucumber (Cucumis sativus L.) seedlings. International Journal of Molecular Sciences 23, 8260. https://doi.org/10.3390/ijms23158260

Liu, Y. (2024). The Role of Genome-Wide Association Studies (GWAS) in Vegetable Crop Genetic Improvement: From Yield to Nutritional Value. International Journal of Horticulture 14.

Malle, S. (2022). Population Structure and Relatedness for Genome-Wide Association Studies. In "Genome-Wide Association Studies", pp. 185-196. Springer. https://doi.org/10.1007/978-1-0716-2205-6_11

Mallikarjuna, M. G., Veeraya, P., Tomar, R., Jha, S., Nayaka, S. C., Lohithaswa, H., and Chinnusamy, V. (2022). Next-generation breeding approaches for stress resilience in cereals: current status and future prospects. Next-generation plant breeding approaches for stress resilience in cereal crops, 1-43. https://doi.org/10.1007/978-981-19-3198-8_1

Mansueto, L. A. (2024). Resources for Cannabis sativa L. omics data analyses, Southern Cross University.

Marone, D., Russo, M. A., Mores, A., Ficco, D. B., Laidò, G., Mastrangelo, A. M., and Borrelli, G. M. (2021). Importance of landraces in cereal breeding for stress tolerance. Plants 10, 1267. https://doi.org/10.3390/plants10061267

Marsh, J. I., Hu, H., Gill, M., Batley, J., and Edwards, D. (2021). Crop breeding for a changing climate: Integrating phenomics and genomics with bioinformatics. Theoretical and Applied Genetics 134, 1677-1690. https://doi.org/10.1007/s00122-021-03814-4

Mehmood, M., Tanveer, N. A., Joyia, F. A., Ullah, I., and Mohamed, H. I. (2025). Effect of high temperature on pollen grains and yield in economically important crops: a review. Planta 261, 141. https://doi.org/10.1007/s00425-025-04489-3

Mondal, R., Kumar, A., and Gnanesh, B. N. (2023). Crop germplasm: Current challenges, physiological-molecular perspective, and advance strategies towards development of climate-resilient crops. Heliyon 9. https://doi.org/10.1016/j.heliyon.2023.e14841

Neupane, B. (2025). Systematic Comparison of GWAS Methods in Wheat: Balancing Statistical Power, False Positive Control, and Computational Efficiency.

Niu, M., Xie, J., Chen, C., Cao, H., Sun, J., Kong, Q., Shabala, S., Shabala, L., Huang, Y., and Bie, Z. (2018). An early ABA-induced stomatal closure, Na+ sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in Cucurbita species. Journal of experimental botany 69, 4945-4960. https://doi.org/10.1093/jxb/ery254

Oyiga, B. C., Palczak, J., Wojciechowski, T., Lynch, J. P., Naz, A. A., Léon, J., and Ballvora, A. (2020). Genetic components of root architecture and anatomy adjustments to water‐deficit stress in spring barley. Plant, Cell & Environment 43, 692-711. https://doi.org/10.1111/pce.13715

Pabuayon, I. C. M., Jiang, J., Qian, H., Chung, J.-S., and Shi, H. (2021). Gain-of-function mutations of AtNHX1 suppress sos1 salt sensitivity and improve salt tolerance in Arabidopsis. Stress Biology 1, 14. https://doi.org/10.1007/s44154-021-00014-3

Pandit, J., and Sharma, A. K. (2024). Impact of Climate Change on Drought: A Comprehensive Review. International Journal of Agriculture, Environment and Biotechnology Citation: IJAEB: 17(04): 749-763, https://doi.org/10.30954/0974-1712.04.2024.14

Parmar, N., Singh, K. H., Sharma, D., Singh, L., Kumar, P., Nanjundan, J., Khan, Y. J., Chauhan, D. K., and Thakur, A. K. (2017). Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech 7, 239. https://doi.org/10.1007/s13205-017-0953-9

Parsell, D. A., Taulien, J., and Lindquist, S. L. (1993). The role of heat-shock proteins in thermotolerance. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 339, 279-286. https://doi.org/10.1098/rstb.1993.0094

Peng, Y., Cao, H., Peng, Z., Zhou, L., Sohail, H., Cui, L., Yang, L., Huang, Y., and Bie, Z. (2023). Transcriptomic and functional characterization reveals CsHAK5; 3 as a key player in K+ homeostasis in grafted cucumbers under saline conditions. Plant Science 326, 111509. https://doi.org/10.1016/j.plantsci.2023.111509

Peters, S. A., and Underwood, C. J. (2023). Technology-driven approaches for meiosis research in tomato and wild relatives. Plant Reproduction 36, 97-106. https://doi.org/10.1007/s00497-023-00473-7

Pook, T., Mayer, M., Geibel, J., Weigend, S., Cavero, D., Schoen, C. C., and Simianer, H. (2020). Improving imputation quality in BEAGLE for crop and livestock data. G3: Genes, Genomes, Genetics 10, 177-188. https://doi.org/10.1534/g3.119.400935

Poudel, S. (2025). Optimizing Gwas in Barley: Trade-Offs Between Statistical Power and Computational Efficiency Across Different Models. https://doi.org/10.20944/preprints202503.2240.v1

Qureshi, M. E., Dixon, J., and Wood, M. (2015). Public policies for improving food and nutrition security at different scales. Food Security 7, 393-403. https://doi.org/10.1007/s12571-015-0449-5

Ramegowda, V., and Senthil-Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. Journal of plant physiology 176, 47-54. https://doi.org/10.1016/j.jplph.2015.05.008

Rehm, H. L., Page, A. J., Smith, L., Adams, J. B., Alterovitz, G., Babb, L. J., Barkley, M. P., Baudis, M., Beauvais, M. J., and Beck, T. (2021). GA4GH: International policies and standards for data sharing across genomic research and healthcare. Cell genomics 1. https://doi.org/10.1016/j.xgen.2021.100014

Reihs, E., Fischer, A., Gerner, I., Windhager, R., Toegel, S., Zaucke, F., Rothbauer, M., and Jenner, F. (2025). Beyond symptomatic alignment: evaluating the integration of causal mechanisms in matching animal models with human pathotypes in osteoarthritis research. Arthritis Research & Therapy 27, 109. https://doi.org/10.1186/s13075-025-03123-4

Rexroad, C., Vallet, J., Matukumalli, L. K., Reecy, J., Bickhart, D., Blackburn, H., Boggess, M., Cheng, H., Clutter, A., and Cockett, N. (2019). Genome to phenome: improving animal health, production, and well-being–a new USDA blueprint for animal genome research 2018–2027. Frontiers in genetics 10, 327. https://doi.org/10.1111/j.1744-7348.2011.00502.x

Rogiers, S. Y., Holzapfel, B., and Smith, J. (2011). Sugar accumulation in roots of two grape varieties with contrasting response to water stress. Annals of Applied Biology 159, 399-413. https://doi.org/10.1111/j.1744-7348.2011.00502.x

Sahay, S. (2016). Big data and public health: Challenges and opportunities for low and middle income countries. Communications of the Association for Information Systems 39, 20. https://doi.org/10.17705/1CAIS.03920

Sallam, A., Alqudah, A. M., Baenziger, P. S., and Rasheed, A. (2023). Genetic validation and its role in crop improvement. Vol. 13, pp. 1078246. Frontiers Media SA. https://doi.org/10.3389/fpls.2023.1078246

Sharma, S., Powers, A., Bradley, B., and Ressler, K. J. (2016). Gene× environment determinants of stress-and anxiety-related disorders. Annual review of psychology 67, 239-261. https://doi.org/10.1146/annurev-psych-122414-033433

Sinha, D., Maurya, A. K., Abdi, G., Majeed, M., Agarwal, R., Mukherjee, R., Ganguly, S., Aziz, R., Bhatia, M., and Majgaonkar, A. (2023). Integrated genomic selection for accelerating breeding programs of climate-smart cereals. Genes 14, 1484. https://doi.org/10.3390/genes14121484

Solankey, S. S., Kumari, M., Akhtar, S., Singh, H. K., and Ray, P. K. (2021). Challenges and opportunities in vegetable production in changing climate: Mitigation and adaptation strategies. Advances in Research on Vegetable Production Under a Changing Climate Vol. 1, 13-59. https://doi.org/10.1007/978-3-030-63497-1

Sonah, H., Bastien, M., Iquira, E., Tardivel, A., Légaré, G., Boyle, B., Normandeau, É., Laroche, J., Larose, S., and Jean, M. (2013). An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PloS one 8, e54603. https://doi.org/10.1371/journal.pone.0054603

Sorkheh, K., Malysheva-Otto, L. V., Wirthensohn, M. G., Tarkesh-Esfahani, S., and Martínez-Gómez, P. (2008). Linkage disequilibrium, genetic association mapping and gene localization in crop plants. Genetics and Molecular Biology 31, 805-814..

Srinivasa Rao, M., Mani, M., Prasad, Y., Prabhakar, M., Sridhar, V., Vennila, S., and Singh, V. (2022). Climate change and pest management strategies in horticultural and agricultural ecosystems. Trends in horticultural entomology, 81-122.

Srivastav, A. K., Das, P., and Srivastava, A. K. (2024). Future trends, innovations, and global collaboration. In "Biotech and IoT: an introduction using cloud-driven labs", pp. 309-398. Springer.

Teh, S. Y., and Koh, H. L. (2016). Climate change and soil salinization: impact on agriculture, water and food security. International Journal of Agriculture, Forestry and Plantation 2, 1-9.

Thakral, V., Yadav, H., Padalkar, G., Kumawat, S., Raturi, G., Kumar, V., Mandlik, R., Rajora, N., and Singh, M. (2022). Recent advances and applicability of GBS, GWAS, and GS in polyploid crops. Genotyping by Sequencing for Crop Improvement, 328-354.

Tiwari, J. (2022). "Potato improvement in the post-genomics era," CRC Press.

Tiwari, J. K., Challam, C., Chakrabarti, S. K., and Feingold, S. E. (2020). Climate-smart potato: an integrated breeding, genomics, and phenomics approach. In "Genomic designing of climate-smart vegetable crops", pp. 1-46. Springer.

Torkamaneh, D., and Belzile, F. (2015). Scanning and filling: ultra-dense SNP genotyping combining genotyping-by-sequencing, SNP array and whole-genome resequencing data. PloS one 10, e0131533. https://doi.org/10.1371/journal.pone.0131533

Tyagi, A., Mir, Z. A., Almalki, M. A., Deshmukh, R., and Ali, S. (2024). Genomics-assisted breeding: a powerful breeding approach for improving plant growth and stress resilience. Agronomy 14, 1128.

Voss-Fels, K. P., Cooper, M., and Hayes, B. J. (2019). Accelerating crop genetic gains with genomic selection. Theoretical and Applied Genetics 132, 669-686.

Watanabe, K., Stringer, S., Frei, O., Umićević Mirkov, M., de Leeuw, C., Polderman, T. J., van der Sluis, S., Andreassen, O. A., Neale, B. M., and Posthuma, D. (2019). A global overview of pleiotropy and genetic architecture in complex traits. Nature genetics 51, 1339-1348.

Wen, T., Li, J.-H., Wang, Q., Gao, Y.-Y., Hao, G.-F., and Song, B.-A. (2023). Thermal imaging: The digital eye facilitates high-throughput phenotyping traits of plant growth and stress responses. Science of The Total Environment 899, 165626.

Wu, X., Sun, T., Xu, W., Sun, Y., Wang, B., Wang, Y., Li, Y., Wang, J., Wu, X., and Lu, Z. (2021). Unraveling the genetic architecture of two complex, stomata-related drought-responsive traits by high-throughput physiological phenotyping and GWAS in cowpea (Vigna. Unguiculata L. Walp). Frontiers in Genetics 12, 743758.

Xanthopoulou, A., Paris, H. S., Tsompanoglou, I., Polidoros, A. N., Mellidou, I., and Ganopoulos, I. (2022). Genomic designing for abiotic stress tolerance in cucurbits. In "Genomic designing for abiotic stress resistant vegetable crops", pp. 187-252. Springer.

Xue, A., and Cui, Y. (2025). The research progress on crop genomics and genome-wide association studies: A review. Advances in Resources Research 5, 123-145.

Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., Xiong, L., and Yan, J. (2020). Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Molecular plant 13, 187-214. https://doi.org/10.1016/j.molp.2019.12.008

Ye, J., Wang, X., Wang, W., Yu, H., Ai, G., Li, C., Sun, P., Wang, X., Li, H., and Ouyang, B. (2021). Genome-wide association study reveals the genetic architecture of 27 agronomic traits in tomato. Plant Physiology 186, 2078-2092 https://doi.org/10.1093/plphys/kiab102

You, F. M., Khan, N., Shazadee, H., and Cloutier, S. (2023). QTL mapping: Strategy, progress, and prospects in flax. The Flax Genome, 69-99.

Yu, B., Yan, S., Zhou, H., Dong, R., Lei, J., Chen, C., and Cao, B. (2018). Overexpression of CsCaM3 improves high temperature tolerance in cucumber. Frontiers in Plant Science 9, 797. https://doi.org/10.3389/fpls.2018.00797

Yue, P., Melamud, E., and Moult, J. (2006). SNPs3D: candidate gene and SNP selection for association studies. BMC bioinformatics 7, 166. https://doi.org/10.1186/1471-2105-7-166

Zafar, T., Mehra, A., Das, P., Shaik, B., and Malik, A. A. (2024). Demystifying the advanced interventions of genetics and modern breeding approaches for nutritional security and sustainability of neglected and underused crop species (NUCS). Genetic Resources and Crop Evolution 71, 559-577. https://doi.org/10.1007/s10722-023-01522-y

Zahid, G., Aka Kaçar, Y., Dönmez, D., Küden, A., and Giordani, T. (2022). Perspectives and recent progress of genome-wide association studies (GWAS) in fruits. Molecular Biology Reports 49, 5341-5352. https://doi.org/10.1007/s11033-022-07823-0

Zenda, T., Liu, S., Dong, A., and Duan, H. (2021a). Advances in cereal crop genomics for resilience under climate change. Life 11, 502.

https://doi.org/10.3390/life11060502

Zenda, T., Liu, S., Dong, A., Li, J., Wang, Y., Liu, X., Wang, N., and Duan, H. (2021b). Omics-facilitated crop improvement for climate resilience and superior nutritive value. Frontiers in Plant Science 12, 774994. https://doi.org/10.3389/fpls.2021.774994

Zhang, F., Jiang, S., Li, Q., Song, Z., Yang, Y., Yu, S., Nie, Z., Chu, M., and An, Y. (2023). Identification of the ALMT gene family in the potato (Solanum tuberosum L.) and analysis of the function of StALMT6/10 in response to aluminum toxicity. Frontiers in Plant Science 14, 1274260. https://doi.org/10.3389/fpls.2023.1274260

Zhang, G., Tang, R., Niu, S., Si, H., Yang, Q., Bizimungu, B., Regan, S., and Li, X.-Q. (2020). Effects of earliness on heat stress tolerance in fifty potato cultivars. American Journal of Potato Research 97, 23-32. https://doi.org/10.1007/s12230-019-09729-w

Zhang, N., Shi, J., Zhao, H., and Jiang, J. (2018). Activation of small heat shock protein (SlHSP17. 7) gene by cell wall invertase inhibitor (SlCIF1) gene involved in sugar metabolism in tomato. Gene 679, 90-99. https://doi.org/10.1016/j.gene.2018.09.031

Zhou‐Tsang, A., Wu, Y., Henderson, S., Walker, A., Borneman, A., Walker, R., and Gilliham, M. (2021). Grapevine salt tolerance. Australian Journal of Grape and Wine Research 27, 149-168. https://doi.org/10.1111/ajgw.12478

Zuk, O., Schaffner, S. F., Samocha, K., Do, R., Hechter, E., Kathiresan, S., Daly, M. J., Neale, B. M., Sunyaev, S. R., and Lander, E. S. (2014). Searching for missing heritability: designing rare variant association studies. Proceedings of the National Academy of Sciences 111, E455-E464.https://doi.org/10.1073/pnas.1322563111

Downloads

Published

2026-02-14

How to Cite

HAMMAD, M., TALIB, U., SHER, A., SHAFIQ, M., & SHERAZI, S. (2026). CLIMATE-RESILIENT HORTICULTURE THROUGH GENOMIC TOOLS: A DECADE OF GENOME-WIDE ASSOCIATION STUDIES (GWAS) APPLICATIONS AMIDST A CHANGING CLIMATE. Bulletin of Biological and Allied Sciences Research, 2026(1), 115. https://doi.org/10.64013/bbasr.v2026i1.115

Most read articles by the same author(s)