MECHANISM OF DROUGHT STRESS TOLERANCE IN WHEAT

Authors

  • MU RASHEED Department of Plant Breeding and Genetics, University of the Punjab, Lahore, Pakistan
  • A MALIK Department of Plant Breeding and Genetics, University of the Punjab, Lahore, Pakistan

DOI:

https://doi.org/10.54112/bbasr.v2022i1.23

Keywords:

wheat, drought, cereal, climate change, gene pool

Abstract

Wheat is one of our major cereal crops worldwide, facing different challenges. Drought is a combination of adverse effects because of global warming and climate change. About ¼ of the world is under these effects, which were not under consideration till 2019. This article will discuss multiple harmful effects on our major cereal crop, wheat. The retarded growth and overall yield of 39% have a great effect on the economy of any country. No doubt, the plant itself has natural mechanisms to alleviate the adverse effects, but long-term and periodic stresses greatly affect wheat's gene pool. Some goods are involved in improving wheat plants, which are briefly described in this article.

Downloads

Download data is not yet available.

References

Aaliya, K., Qamar, Z., Ahmad, N. I., Ali, Q., Munim, F. A., & Husnain, T. (2016). Transformation, evaluation of gtgene and multivariate genetic analysis for morpho-physiological and yield attributing traits in Zea mays. Genetika, 48(1), 423-433. DOI: https://doi.org/10.2298/GENSR1601423A

Ahanger, M. A., Tomar, N. S., Tittal, M., Argal, S., & Agarwal, R. (2017). Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology and Molecular Biology of Plants, 23(4), 731-744. DOI: https://doi.org/10.1007/s12298-017-0462-7

Ahmad, M., Ali, Q., Hafeez, M. M., & Malik, A. (2021). Improvement for biotic and abiotic stress tolerance in crop plants. Biological and Clinical Sciences Research Journal, 2021(1). https://doi.org/10.54112/bcsrj.v2021i1.50 DOI: https://doi.org/10.54112/bcsrj.v2021i1.50

Ali, F., Ahsan, M., Ali, Q., & Kanwal, N. (2017). Phenotypic stability of Zea mays grain yield and its attributing traits under drought stress. Frontiers in plant science, 8, 1397. DOI: https://doi.org/10.3389/fpls.2017.01397

Ali, Q., Ahsan, M., Ali, F., Aslam, M., Khan, N. H., Munzoor, M., Mustafa, H. S. B., & Muhammad, S. (2013). Heritability, heterosis and heterobeltiosis studies for morphological traits of maize (Zea mays L.) seedlings. Advancements in Life sciences, 1(1).

Ali, Q., Ahsan, M., Kanwal, N., Ali, F., Ali, A., Ahmed, W., Ishfaq, M., & Saleem, M. (2016). Screening for drought tolerance: comparison of maize hybrids under water deficit condition. Advancements in Life sciences, 3(2), 51-58.

Ali, Q., Ali, A., Ahsan, M., Nasir, I. A., Abbas, H. G., & Ashraf, M. A. (2014). Line× Tester analysis for morpho-physiological traits of Zea mays L seedlings. Advancements in Life sciences, 1(4), 242-253.

Álvarez, S., Rodríguez, P., Broetto, F., & Sánchez-Blanco, M. J. (2018). Long term responses and adaptive strategies of Pistacia lentiscus under moderate and severe deficit irrigation and salinity: Osmotic and elastic adjustment, growth, ion uptake and photosynthetic activity. Agricultural Water Management, 202, 253-262. DOI: https://doi.org/10.1016/j.agwat.2018.01.006

Ammar, A., Ghafoor, S., Akram, A. U. A., Ashraf, W., Akhtar, S., Nawaz, M. S., Zaghum, M. J., Khan, M. Y., Aas, M. A., Shaheen, A., & Khalid, M. N. (2022). Genetic evaluation of indigenous and exotic wheat germplasm based on yield related attributes. Biological and Clinical Sciences Research Journal, 2022(1). https://doi.org/10.54112/bcsrj.v2022i1.104 DOI: https://doi.org/10.54112/bcsrj.v2022i1.104

Araujo, S. S., Beebe, S., Crespi, M., Delbreil, B., Gonzalez, E. M., Gruber, V., Lejeune-Henaut, I., Link, W., Monteros, M. J., & Prats, E. (2015). Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Critical Reviews in Plant Sciences, 34(1-3), 237-280. DOI: https://doi.org/10.1080/07352689.2014.898450

Ashraf, A., Amhed, N., Shahid, M., Zahra, T., Ali, Z., Hassan, A., Awan, A., Batool, S., Raza, M. A., Irfan, U., Maqsood, Z., Khalid, M. N., & Amjad, I. (2022). effect of different media compositions of 2,4-d, dicamba, and picloram on callus induction in wheat (Triticum aestivum L.). Biological and Clinical Sciences Research Journal, 2022(1). https://doi.org/10.54112/bcsrj.v2022i1.159 DOI: https://doi.org/10.54112/bcsrj.v2022i1.159

Ashraf, M., & Foolad, M. (2011). Advances in Agronomy. In: Academic Press Cambridge, MA, USA:.

Asif, S., Ali, Q., & Malik, A. (2020). Evaluation of salt and heavy metal stress for seedling traits in wheat. Biological and Clinical Sciences Research Journal, 2020(1). https://doi.org/10.54112/bcsrj.v2020i1.5 DOI: https://doi.org/10.54112/bcsrj.v2020i1.5

Aslam, M., Maqbool, M. A., & Cengiz, R. (2015). Mechanisms of drought resistance. In Drought Stress in Maize (Zea mays L.) (pp. 19-36). Springer. DOI: https://doi.org/10.1007/978-3-319-25442-5_3

Atif, M., Ahmad, F., Manzoor, M. T., Gilani, K., Ali, Q., Sarwar, M., Anjum, S., Alam, M. W., & Hussain, A. (2022). Application of bioinformatics tools to check mutation and evolution potential of chickpea cholorotic dwarf virus (CPCDV) infecting cotton and host plants. Biological and Clinical Sciences Research Journal, 2022(1). https://doi.org/10.54112/bcsrj.v2022i1.116 DOI: https://doi.org/10.54112/bcsrj.v2022i1.116

Azhar, M. M., Ali, Q., Malik, A., Khalili, E., Javed, M. A., Ali, S. W., & Haidar, M. S. (2021). Optimization of Ethanol Production from Enzymatically Saccharified Biomass of Acid-Pretreated Rice Straw. Philippine Agricultural Scientist, 104(3).

Balqees, N., Ali, Q., & Malik, A. (2020). Genetic evaluation for seedling traits of maize and wheat under biogas wastewater, sewage water and drought stress conditions. Biological and Clinical Sciences Research Journal, 2020(1). https://doi.org/10.54112/bcsrj.v2020i1.38 DOI: https://doi.org/10.54112/bcsrj.v2020i1.38

Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., & Alotaibi, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 10(1), 1-19. DOI: https://doi.org/10.1038/s41598-020-73489-z

Battaglia, M., Lee, C., Thomason, W., Fike, J., & Sadeghpour, A. (2019). Hail damage impacts on corn productivity: A review. Crop Science, 59(1), 1-14. DOI: https://doi.org/10.2135/cropsci2018.04.0285

Bennett, M. D., & Hughes, W. G. (1972). Additional mitosis in wheat pollen induced by Ethrel. Nature, 240(5383), 566-568. DOI: https://doi.org/10.1038/240566a0

Blum, A. (2011). Plant water relations, plant stress and plant production. In Plant breeding for water-limited environments (pp. 11-52). Springer. DOI: https://doi.org/10.1007/978-1-4419-7491-4_2

Boulard, T., Roy, J.-C., Pouillard, J.-B., Fatnassi, H., & Grisey, A. (2017). Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Biosystems Engineering, 158, 110-133. DOI: https://doi.org/10.1016/j.biosystemseng.2017.04.001

Brito, C., Dinis, L.-T., Moutinho-Pereira, J., & Correia, C. M. (2019). Drought stress effects and olive tree acclimation under a changing climate. Plants, 8(7), 232. DOI: https://doi.org/10.3390/plants8070232

Budak, H., Kantar, M., & Yucebilgili Kurtoglu, K. (2013). Drought tolerance in modern and wild wheat. The Scientific World Journal, 2013. DOI: https://doi.org/10.1155/2013/548246

Bukhari, S., Peerzada, A., Javed, M., Dawood, M., Hussain, N., & Ahmad, S. (2019). Agronomic Crops. In: Springer Singapore:.

Dobra, J., Motyka, V., Dobrev, P., Malbeck, J., Prasil, I. T., Haisel, D., Gaudinova, A., Havlova, M., Gubis, J., & Vankova, R. (2010). Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. Journal of plant physiology, 167(16), 1360-1370. DOI: https://doi.org/10.1016/j.jplph.2010.05.013

EarthSky.org. (2022). Drought around the world. https://earthsky.org/earth/drought-around-world-2022-revealing-hidden-artifacts/

Ebeed, H. T., Hassan, N. M., & Aljarani, A. M. (2017). Exogenous applications of polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes. Plant Physiology and Biochemistry, 118, 438-448. DOI: https://doi.org/10.1016/j.plaphy.2017.07.014

Farooq, M., Irfan, M., Aziz, T., Ahmad, I., & Cheema, S. (2013). Seed priming with ascorbic acid improves drought resistance of wheat. Journal of Agronomy and Crop Science, 199(1), 12-22. DOI: https://doi.org/10.1111/j.1439-037X.2012.00521.x

Farooq, M. U., Bashir, M. F., Khan, M. U. S., Iqbal, B., & Ali, Q. (2021). Role of crispr to improve abiotic stress tolerance in crop plants. Biological and Clinical Sciences Research Journal, 2021(1). https://doi.org/10.54112/bcsrj.v2021i1.69 DOI: https://doi.org/10.54112/bcsrj.v2021i1.69

Fatima, A., Saeed, A., Khalid, M. N., Imam, M. M. F., Rafique, M. A., Sharif, M. S., Iqbal, N., Tipu, A. L. K., & Amjad, I. (2022). GEnetic studies of f2 population for fiber and yield related attributes in Gossypium hirsutum. Biological and Clinical Sciences Research Journal, 2022(1). https://doi.org/10.54112/bcsrj.v2022i1.134 DOI: https://doi.org/10.54112/bcsrj.v2022i1.134

Fatima, A., Saeed, A., Ullah, M. I., Shah, S. A. H., Ijaz, M., Anwar, M. R., Khaliq, A., Chohan, S. M., Khalid, M. N., Khan, A., & Amjad, I. (2022). Estimation of gene action for the selection of superior parents and their cross combinations for yield and fiber associated attributes in american cotton (Gossypium hirsutum L.). Biological and Clinical Sciences Research Journal, 2022(1). https://doi.org/10.54112/bcsrj.v2022i1.151 DOI: https://doi.org/10.54112/bcsrj.v2022i1.151

Galaitsi, S., Russell, R., Bishara, A., Durant, J. L., Bogle, J., & Huber-Lee, A. (2016). Intermittent domestic water supply: A critical review and analysis of causal-consequential pathways. Water, 8(7), 274. DOI: https://doi.org/10.3390/w8070274

Ghafoor, M. F., Ali, Q., & Malik, A. (2020). Effects of salicylic acid priming for salt stress tolerance in wheat. Biological and Clinical Sciences Research Journal, 2020(1). https://doi.org/10.54112/bcsrj.v2020i1.24 DOI: https://doi.org/10.54112/bcsrj.v2020i1.24

Hasanuzzaman, M., Nahar, K., & Hossain, M. A. (2019). Wheat production in changing environments. Springer. DOI: https://doi.org/10.1007/978-981-13-6883-7

Husain, I., & Aspinall, D. (1970). Water stress and apical morphogenesis in barley. Annals of Botany, 34(2), 393-407. DOI: https://doi.org/10.1093/oxfordjournals.aob.a084377

Idrees, H., Shabbir, I., Khurshid, H., Khurshid, A., Tahira, R. I., Fatima, F., Younas, A., & Abbas, H. G. (2022). Seed priming of wheat through salicylic acid to induce salt stress tolerance. Biological and Clinical Sciences Research Journal, 2022(1). https://doi.org/10.54112/bcsrj.v2022i1.95 DOI: https://doi.org/10.54112/bcsrj.v2022i1.95

Iqbal, S., Ali, Q., & Malik, A. (2021). Effects of seed priming with salicylic acid on zea mays seedlings grown under salt stress conditions. Biological and Clinical Sciences Research Journal, 2021(1). https://doi.org/10.54112/bcsrj.v2021i1.65 DOI: https://doi.org/10.54112/bcsrj.v2021i1.65

Iqra, L., Rashid, M. S., Ali, Q., Latif, I., & Malik, A. (2020). Evaluation of genetic variability for salt tolerance in wheat. Biological and Clinical Sciences Research Journal, 2020(1). https://doi.org/10.54112/bcsrj.v2020i1.16 DOI: https://doi.org/10.54112/bcsrj.v2020i1.16

Javid, M. G., Sorooshzadeh, A., Moradi, F., Modarres Sanavy, S. A. M., & Allahdadi, I. (2011). The role of phytohormones in alleviating salt stress in crop plants. Australian Journal of Crop Science, 5(6), 726-734.

Kasim, W. A., Osman, M. E., Omar, M. N., El-Daim, A., Islam, A., Bejai, S., & Meijer, J. (2013). Control of drought stress in wheat using plant-growth-promoting bacteria. Journal of plant growth regulation, 32(1), 122-130. DOI: https://doi.org/10.1007/s00344-012-9283-7

Khan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R., & Luo, H. (2018). Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological research, 51. DOI: https://doi.org/10.1186/s40659-018-0198-z

Khan, N., Bano, A., & Curá, J. A. (2020). Role of beneficial microorganisms and salicylic acid in improving rainfed agriculture and future food safety. Microorganisms, 8(7), 1018. DOI: https://doi.org/10.3390/microorganisms8071018

Masood, S. A., Khaliq, A., Rauf, H. A., Mahmood, K., Ahmed, I., Hussain, N., Kanwal, S., Faheem, U., & Muhammad, T. (2022). Heat and drought forbearing, upland cotton (Gossypium hirsutum L.) variety; rh-668 for cultivation in semi-arid region. Biological and Clinical Sciences Research Journal, 2022(1). https://doi.org/10.54112/bcsrj.v2022i1.121

Mazhar, T., Ali, Q., & Malik, M. (2020). Effects of salt and drought stress on growth traits of Zea mays seedlings. Life Science Journal, 17(7), 48-54.

Mostofa, M. G., Ghosh, A., Li, Z.-G., Siddiqui, M. N., Fujita, M., & Tran, L.-S. P. (2018). Methylglyoxal–a signaling molecule in plant abiotic stress responses. Free Radical Biology and Medicine, 122, 96-109. DOI: https://doi.org/10.1016/j.freeradbiomed.2018.03.009

Munir, M. A., Bashir, H., Zaghum, M. J., Aziz, S., Akhtar, S., Ahmad, N. H., Kanwal, S., Kiran, S., Tipu, A. L. K., Liaqat, S., Ahmad, M. I., Latif, A., Latif, A., Nadeem, M., & Shaukat, S. (2022). Evaluation of cotton mutants for water deficit condition. Biological and Clinical Sciences Research Journal, 2022(1). https://doi.org/10.54112/bcsrj.v2022i1.107 DOI: https://doi.org/10.54112/bcsrj.v2022i1.107

Nachit, M., Monneveux, P., Araus, J., Sorrells, M., Royo, C., Nachit, M., Fonzo, N., & Araus, J. (2000). Relationship of dryland productivity and drought tolerance with some molecular markers for possible MAS in durum (Triticum turgidum L. var. durum). CIHEAM-Options Mediterranean’s, 40, 203-206.

Naseem, S., Ali, Q., & Malik, A. (2020). Evaluation of maize seedling traits under salt stress. Biological and Clinical Sciences Research Journal, 2020(1). https://doi.org/10.54112/bcsrj.v2020i1.25 DOI: https://doi.org/10.54112/bcsrj.v2020i1.25

Nations, F. a. A. O. o. t. U. (2022). Wheat Production in World. fao.org. Retrieved 16 December 2022 from https://www.fao.org/worldfoodsituation/csdb/en/

Nawaz, F., Naeem, M., Zulfiqar, B., Akram, A., Ashraf, M. Y., Raheel, M., Shabbir, R. N., Hussain, R. A., Anwar, I., & Aurangzaib, M. (2017). Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants: a critical review. Environmental Science and Pollution Research, 24(19), 15959-15975. DOI: https://doi.org/10.1007/s11356-017-9163-6

Nawaz, J., Hussain, M., Jabbar, A., Nadeem, G. A., Sajid, M., Subtain, M. U., & Shabbir, I. (2013). Seed priming a technique. International Journal of Agriculture and Crop Sciences, 6(20), 1373.

Rafi, R., Robina, K., Zahoor, M. J., & Abbas, H. G. (2022). Evaluation of maize and sorghum genotypes under drought, drainage and biogas waste water applications. Biological and Clinical Sciences Research Journal, 2022(1). https://doi.org/10.54112/bcsrj.v2022i1.94 DOI: https://doi.org/10.54112/bcsrj.v2022i1.94

Ruehr, N. K., Grote, R., Mayr, S., & Arneth, A. (2019). Beyond the extreme: recovery of carbon and water relations in woody plants following heat and drought stress. Tree physiology, 39(8), 1285-1299. DOI: https://doi.org/10.1093/treephys/tpz032

Saini, H. S., & Westgate, M. E. (1999). Reproductive development in grain crops during drought. Advances in agronomy, 68, 59-96. DOI: https://doi.org/10.1016/S0065-2113(08)60843-3

Sarwar, M., Anjum, S., Alam, M. W., Ali, Q., Ayyub, C., Haider, M. S., Ashraf, M. I., & Mahboob, W. (2022). Triacontanol regulates morphological traits and enzymatic activities of salinity affected hot pepper plants. Scientific Reports, 12(1), 1-8. DOI: https://doi.org/10.1038/s41598-022-06516-w

Sarwar, M., Anjum, S., Ali, Q., Alam, M. W., Haider, M. S., & Mehboob, W. (2021). Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells. Scientific Reports, 11(1), 1-10. DOI: https://doi.org/10.1038/s41598-021-04174-y

Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. DOI: https://doi.org/10.3390/plants10020259

Sobhanian, H., Pahlavan, S., & Meyfour, A. (2020). How does proteomics target plant environmental stresses in a semi-arid area? Molecular Biology Reports, 47(4), 3181-3194. DOI: https://doi.org/10.1007/s11033-020-05406-6

Tahir, T., Ali, Q., Rashid, M. S., & Malik, A. (2020). The journey of crispr-cas9 from bacterial defense mechanism to a gene editing tool in both animals and plants. Biological and Clinical Sciences Research Journal, 2020(1). https://doi.org/10.54112/bcsrj.v2020i1.17 DOI: https://doi.org/10.54112/bcsrj.v2020i1.17

Tzortzakis, N., Chrysargyris, A., & Aziz, A. (2020). Adaptive response of a native mediterranean grapevine cultivar upon short-term exposure to drought and heat stress in the context of climate change. Agronomy, 10(2), 249. DOI: https://doi.org/10.3390/agronomy10020249

Wang, J.-Y., Xiong, Y.-C., Li, F.-M., Siddique, K. H., & Turner, N. C. (2017). Effects of drought stress on morphophysiological traits, biochemical characteristics, yield, and yield components in different ploidy wheat: A meta-analysis. Advances in agronomy, 143, 139-173. DOI: https://doi.org/10.1016/bs.agron.2017.01.002

Wang, J., Li, C., Li, L., Reynolds, M., Mao, X., & Jing, R. (2021). Exploitation of drought tolerance-related genes for crop improvement. International Journal of Molecular Sciences, 22(19), 10265. DOI: https://doi.org/10.3390/ijms221910265

Wasaya, A., Zhang, X., Fang, Q., & Yan, Z. (2018). Root phenotyping for drought tolerance: a review. Agronomy, 8(11), 241. DOI: https://doi.org/10.3390/agronomy8110241

Yin, J., Gentine, P., Zhou, S., Sullivan, S. C., Wang, R., Zhang, Y., & Guo, S. (2018). Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nature Communications, 9(1), 1-10. DOI: https://doi.org/10.1038/s41467-018-06765-2

Zahoor, M. J., Robina, K., Rafi, R., & Abbas, H. G. (2022). Effects of drought and biogas waste water applications on maize seedling growth. Biological and Clinical Sciences Research Journal, 2022(1). https://doi.org/10.54112/bcsrj.v2022i1.93 DOI: https://doi.org/10.54112/bcsrj.v2022i1.93

Zhou, S., Sun, X., Yin, S., Kong, X., Zhou, S., Xu, Y., Luo, Y., & Wang, W. (2014). The role of the F-box gene TaFBA1 from wheat (Triticum aestivum L.) in drought tolerance. Plant Physiology and Biochemistry, 84, 213-223. DOI: https://doi.org/10.1016/j.plaphy.2014.09.017

Zoghi, Z., Hosseini, S. M., Kouchaksaraei, M. T., Kooch, Y., & Guidi, L. (2019). The effect of biochar amendment on the growth, morphology and physiology of Quercus castaneifolia seedlings under water-deficit stress. European Journal of Forest Research, 138(6), 967-979. DOI: https://doi.org/10.1007/s10342-019-01217-y

Downloads

Published

2022-12-28

How to Cite

RASHEED, M., & MALIK, A. (2022). MECHANISM OF DROUGHT STRESS TOLERANCE IN WHEAT. Bulletin of Biological and Allied Sciences Research, 2022(1), 23. https://doi.org/10.54112/bbasr.v2022i1.23