FROM TOXICOLOGY TO TECHNOLOGY: HUMAN HEALTH RISKS OF MYCOTOXINS IN THE FOOD CHAIN AND CURRENT APPROACHES TO THEIR DETECTION AND CONTROL
DOI:
https://doi.org/10.64013/bbasr.v2026i1.114Keywords:
Mycotoxin, toxicological, mutagenic, aflatoxins, ochratoxin, food safety, Fusarium, Aspergillus, Penicillium, detoxification, control strategiesAbstract
Mycotoxins are small secondary metabolites produced by filamentous fungi such as Aspergillus, Fusarium, and Penicillium. They are common contaminants of food and feed and pose a serious threat to public health. These toxins exert acute and chronic effects ranging from hepatotoxic, nephrotoxic, estrogenic, neurotoxic, and immunosuppressive outcomes to mutagenicity and carcinogenicity, with exposure occurring via ingestion, inhalation, and dermal contact. Major classes include aflatoxins, ochratoxin A (OTA), fumonisins, zearalenone (ZEA), trichothecenes, and patulin, frequently contaminating cereals, nuts, spices, dried fruits, juices, and dairy products. Climate change, through drought, heat, and elevated CO₂, is expected to alter fungal growth and raise mycotoxin risks. The burden is highlighted by aflatoxicosis outbreaks, such as the 2004 event in Kenya that caused 125 deaths. Mechanistic studies show that aflatoxin B₁ can be activated by cytochrome P450, form DNA adducts, and lead to hepatocellular carcinoma. OTA is nephrotoxic and potentially carcinogenic; fumonisins disrupt sphingolipid metabolism with links to esophageal cancer; ZEA perturbs endocrine function and fertility. Analytical surveillance employs chromatographic platforms (LC/GC) with fluorescence, UV, or mass spectrometry, alongside immunoassays and immunoaffinity workflows. Key challenges include achieving trace-level sensitivity, ensuring specificity in complex matrices, and lowering operational costs, which limit monitoring in resource-constrained regions. Regulatory limits, such as those set by the EU, emphasize standardized detection and risk control. Mitigation relies on a farm-to-fork approach integrating good agricultural practices, biological and chemical controls, and effective post-harvest handling. Physical and bioprocessing methods like gamma irradiation, cold plasma, ammoniation, alkaline treatments, and microbial or enzymatic degradation using Lactobacillus, Saccharomyces, laccases, and aflatoxin-oxidase offer practical reduction strategies. Emerging precision biosensors, AI-based risk prediction, and genome-driven biocontrol and enzyme engineering promise earlier detection and improved detoxification. This review synthesizes current insights on toxicology, monitoring, and mitigation to lower human exposure and protect food systems.
Downloads
References
Keller, L., Abrunhosa, L., Keller, K., Rosa, C. A., Cavaglieri, L., and Venâncio, A. (2015). Zearalenone and its derivatives α-zearalenol and β-zearalenol decontamination by Saccharomyces cerevisiae strains isolated from bovine forage. Toxins 7, 3297-3308. https://doi.org/10.3390/toxins7083297 DOI: https://doi.org/10.3390/toxins7083297
Kemboi, D. (2023). Mycotoxins in Kenyan dairy cattle feed: occurrence and mitigation using bentonite and fumonisin esterase additives, Ghent University.
Kensler, T. W., and Eaton, D. L. (2024). 65 Years on—Aflatoxin Biomarkers Blossoming: Whither Next? Toxins 16, 496. https://doi.org/10.3390/toxins16110496 DOI: https://doi.org/10.3390/toxins16110496
Keriene, I., Mankeviciene, A., Cesnuleviciene, R., and Janaviciene, S. (2016). Mycotoxins in Lithuanian buckwheat grain grown under sustainable and organic production systems. In "Proceedings of the 3rd International Conference on Sustainable Agriculture and Environment (3rd ICSAE)".
Kilic, K. D., Gokhan, A., Sozmen, E. Y., and Uysal, A. (2022). Liver histology and biochemistry of exposed newborn and infant rats with experimental aflatoxicosis. https://doi.org/10.29261/pakvetj/2022.066 DOI: https://doi.org/10.29261/pakvetj/2022.066
Kilonzo, R. M., Imungi, J. K., Muiru, W. M., Lamuka, P. O., and Njage, P. M. K. (2014). Household dietary exposure to aflatoxins from maize and maize products in Kenya. Food Additives & Contaminants: Part A 31, 2055-2062. https://doi.org/10.1080/19440049.2014.976595 DOI: https://doi.org/10.1080/19440049.2014.976595
Kirinčič, S., Škrjanc, B., Kos, N., Kozolc, B., Pirnat, N., and Tavčar-Kalcher, G. (2015). Mycotoxins in cereals and cereal products in Slovenia–Official control of foods in the years 2008–2012. Food Control 50, 157-165. https://doi.org/10.1016/j.foodcont.2014.08.034 DOI: https://doi.org/10.1016/j.foodcont.2014.08.034
Kolosova, A., and Stroka, J. (2011). Substances for reduction of the contamination of feed by mycotoxins: A review. World Mycotoxin Journal 4, 225-256. https://doi.org/10.3920/WMJ2011.1288 DOI: https://doi.org/10.3920/WMJ2011.1288
Kornher, L. (2018). Maize markets in Eastern and Southern Africa (ESA) in the context of climate change. The State of Agricultural Commodity Markets (SOCO) Background Paper, 58. 67, The world Bank Report No: AUS0001493
Kortei, N. K., Annan, T., Akonor, P. T., Richard, S. A., Annan, H. A., Kyei-Baffour, V., Akuamoa, F., Akpaloo, P. G., and Esua-Amoafo, P. (2021). The occurrence of aflatoxins and human health risk estimations in randomly obtained maize from some markets in Ghana. Scientific Reports 11, 4295. https://doi.org/10.1038/s41598-021-83751-7 DOI: https://doi.org/10.1038/s41598-021-83751-7
Kumar, D., and Kalita, P. (2017). Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 6, 8. https://doi.org/10.3390/foods6010008 DOI: https://doi.org/10.3390/foods6010008
Lach, M., and Kotarska, K. (2024). Negative effects of occurrence of mycotoxins in animal feed and biological methods of their detoxification: A review. Molecules 29, 4563. https://doi.org/10.3390/molecules29194563 DOI: https://doi.org/10.3390/molecules29194563
Lafarge-Frayssinet, C., Decloitre, F., Mousset, S., Martin, M., and Frayssinet, C. (1981). Induction of DNA single-strand breaks by T2 toxin, a trichothecene metabolite of fusarium: effect on lymphoid organs and liver. Mutation Research/Genetic Toxicology 88, 115-123. https://doi.org/10.1016/0165-1218(81)90010-0 DOI: https://doi.org/10.1016/0165-1218(81)90010-0
Lauwers, M., De Baere, S., Letor, B., Rychlik, M., Croubels, S., and Devreese, M. (2019). Multi LC-MS/MS and LC-HRMS methods for determination of 24 mycotoxins including major phase I and II biomarker metabolites in biological matrices from pigs and broiler chickens. Toxins 11, 171. https://doi.org/10.3390/toxins11030171 DOI: https://doi.org/10.3390/toxins11030171
Lee, J.-G., Lee, Y., Kim, C. S., and Han, S. B. (2021). Codex Alimentarius commission on ensuring food safety and promoting fair trade: Harmonization of standards between Korea and codex. Food Science and Biotechnology 30, 1151-1170. https://doi.org/10.1007/s10068-021-00943-7 DOI: https://doi.org/10.1007/s10068-021-00943-7
Lees-Haley, P. R. (2004). Commentary on neuropsychological performance of patients following mold exposure. Scientific Review of Mental Health Practice 3, 60-66.
Leggieri, M. C., Toscano, P., and Battilani, P. (2021). Predicted aflatoxin B1 increase in Europe due to climate change: actions and reactions at global level. Toxins 13, 292. https://doi.org/10.3390/toxins13040292 DOI: https://doi.org/10.3390/toxins13040292
Lei, Y., Zhao, L., Ma, Q., Zhang, J., Zhou, T., Gao, C., and Ji, C. (2014). Degradation of zearalenone in swine feed and feed ingredients by Bacillus subtilis ANSB01G. World Mycotoxin Journal 7, 143-151. https://doi.org/10.3920/WMJ2013.1623 DOI: https://doi.org/10.3920/WMJ2013.1623
Lewis, L., Onsongo, M., Njapau, H., Schurz-Rogers, H., Luber, G., Kieszak, S., Nyamongo, J., Backer, L., Dahiye, A. M., and Misore, A. (2005). Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environmental Health Perspectives 113, 1763-1767. https://doi.org/10.1289/ehp.7998 DOI: https://doi.org/10.1289/ehp.7998
Liu, X., Luo, X., and Hu, W. (1992). Studies on the epidemiology and etiology of moldy sugarcane poisoning in China. Biomedical and environmental sciences: BES 5, 161-177.
Llewellyn, G., McCay, J., Brown, R., Musgrove, D., Butterworth, L., Munson, A., and White Jr, K. (1998). Immunological evaluation of the mycotoxin patulin in female B6C3F1 mice. Food and Chemical Toxicology 36, 1107-1115. https://doi.org/10.1016/S0278-6915(98)00084-2 DOI: https://doi.org/10.1016/S0278-6915(98)00084-2
Ludolph, A., He, F., Spencer, P., Hammerstad, J., and Sabri, M. (1991). 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Canadian journal of Neurological Sciences 18, 492-498. https://doi.org/10.1017/S0317167100032212 DOI: https://doi.org/10.1017/S0317167100032212
Lupescu, A., Jilani, K., Zbidah, M., and Lang, F. (2013). Patulin-induced suicidal erythrocyte death. Cellular Physiology and Biochemistry 32, 291-299. https://doi.org/10.1159/000354437 DOI: https://doi.org/10.1159/000354437
Mafe, A. N., and Büsselberg, D. (2024). Mycotoxins in food: Cancer risks and strategies for control. Foods 13, 3502. https://doi.org/10.3390/foods13213502 DOI: https://doi.org/10.3390/foods13213502
Magembe, K. S. (2025). Mycotoxins impact in food, human and animal health with special reference to aflatoxins, fumonisins, ochratoxins, zearalenone, and deoxynivalenol: A 13. European Journal of Research in Medical Sciences 10, 1-36.
Mahdjoubi, C. K., Arroyo-Manzanares, N., Hamini-Kadar, N., García-Campaña, A. M., Mebrouk, K., and Gámiz-Gracia, L. (2020). Multi-mycotoxin occurrence and exposure assessment approach in foodstuffs from Algeria. Toxins 12, 194. https://doi.org/10.3390/toxins12030194 DOI: https://doi.org/10.3390/toxins12030194
Makun, H. A., Dutton, M. F., Njobeh, P. B., Mwanza, M., and Kabiru, A. Y. (2011). Natural multi-occurrence of mycotoxins in rice from Niger State, Nigeria. Mycotoxin Research 27, 97-104. https://doi.org/10.1007/s12550-010-0080-5 DOI: https://doi.org/10.1007/s12550-010-0080-5
Manetta, A. C., Di Giuseppe, L., Giammarco, M., Fusaro, I., Simonella, A., Gramenzi, A., and Formigoni, A. (2005). High-performance liquid chromatography with post-column derivatisation and fluorescence detection for sensitive determination of aflatoxin M1 in milk and cheese. Journal of Chromatography A 1083, 219-222. https://doi.org/10.1016/j.chroma.2005.06.039 DOI: https://doi.org/10.1016/j.chroma.2005.06.039
Manizan, A. L., Oplatowska-Stachowiak, M., Piro-Metayer, I., Campbell, K., Koffi-Nevry, R., Elliott, C., Akaki, D., Montet, D., and Brabet, C. (2018). Multi-mycotoxin determination in rice, maize and peanut products most consumed in Côte d’Ivoire by UHPLC-MS/MS. Food Control 87, 22-30. https://doi.org/10.1016/j.foodcont.2017.11.032 DOI: https://doi.org/10.1016/j.foodcont.2017.11.032
Mao, X., Chen, A., Qu, J., Luo, P., You, Y., Gao, Y., Dong, F., Wu, Y., and Li, Y. (2023). New insights into in mycotoxins production in Alternaria infected apple during postharvest storage. Postharvest Biology and Technology 198, 112238. https://doi.org/10.1016/j.postharvbio.2022.112238 DOI: https://doi.org/10.1016/j.postharvbio.2022.112238
Marasas, W. (2001). Discovery and occurrence of the fumonisins: a historical perspective. Environmental Health Perspectives 109, 239-243. https://doi.org/10.1289/ehp.01109s2239 DOI: https://doi.org/10.1289/ehp.01109s2239
Marin, S., Ramos, A., Cano-Sancho, G., and Sanchis, V. (2013). Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology 60, 218-237. https://doi.org/10.1016/j.fct.2013.07.047 DOI: https://doi.org/10.1016/j.fct.2013.07.047
Markov, K., Mihaljević, B., Domijan, A.-M., Pleadin, J., Delaš, F., and Frece, J. (2015). Inactivation of aflatoxigenic fungi and the reduction of aflatoxin B1 in vitro and in situ using gamma irradiation. Food control 54, 79-85. https://doi.org/10.1016/j.foodcont.2015.01.036 DOI: https://doi.org/10.1016/j.foodcont.2015.01.036
Maurya, U. The Impact of Mycotoxins in the Food Industry: Occurrence, Detection, and Mitigation Strategies.
McPartland, J. M., Vilgalys, R. J., and Cubeta, M. A. (1997). Mushroom poisoning. Am Fam Physician 55, 1797-800, 1805-9, 1811-2. https://doi.org/10.1177/003335491112600610 DOI: https://doi.org/10.1177/003335491112600610
Medina, A., Rodríguez, A., Sultan, Y., and Magan, N. (2015). Climate change factors andAspergillus flavus: effects on gene expression, growth and aflatoxin production. World Mycotoxin Journal 8, 171-180. https://doi.org/10.3920/WMJ2014.1726 DOI: https://doi.org/10.3920/WMJ2014.1726
Meijer, N., Kleter, G., de Nijs, M., Rau, M. L., Derkx, R., and van der Fels‐Klerx, H. (2021). The aflatoxin situation in Africa: Systematic literature review. Comprehensive Reviews in Food Science and Food Safety 20, 2286-2304. https://doi.org/10.1111/1541-4337.12731 DOI: https://doi.org/10.1111/1541-4337.12731
Meno, L., Abuley, I. K., Escuredo, O., and Seijo, M. C. (2022). Suitability of early blight forecasting systems for detecting first symptoms in potato crops of NW Spain. Agronomy 12, 1611. https://doi.org/10.3390/agronomy12071611 DOI: https://doi.org/10.3390/agronomy12071611
Miedaner, T., and Geiger, H. H. (2015). Biology, genetics, and management of ergot (Claviceps spp.) in rye, sorghum, and pearl millet. Toxins 7, 659-678. https://doi.org/10.3390/toxins7030659 DOI: https://doi.org/10.3390/toxins7030659
Milani, J. (2013). Ecological conditions affecting mycotoxin production in cereals: a review. Veterinarni Medicina 58. 8):405-411. https://doi.org/10.17221/6979-VETMED DOI: https://doi.org/10.17221/6979-VETMED
Miranda-Apodaca, J., Artetxe, U., Aguado, I., Martin-Souto, L., Ramirez-Garcia, A., Lacuesta, M., Becerril, J. M., Estonba, A., Ortiz-Barredo, A., and Hernández, A. (2023). Stress response to climate change and postharvest handling in two differently pigmented lettuce genotypes: Impact on Alternaria alternata invasion and mycotoxin production. Plants 12, 1304. https://doi.org/10.3390/plants12061304 DOI: https://doi.org/10.3390/plants12061304
Montana, E., Etzel, R. A., Allan, T., Horgan, T. E., and Dearborn, D. G. (1997). Environmental risk factors associated with pediatric idiopathic pulmonary hemorrhage and hemosiderosis in a Cleveland community. Pediatrics 99, e5-e5. https://doi.org/10.1542/peds.99.1.e5 DOI: https://doi.org/10.1542/peds.99.1.e5
Mortimer, D. N., Gilbert, J., and Shepherd, M. J. (1987). Rapid and highly sensitive analysis of aflatoxin M1 in liquid and powdered milks using an affinity column cleanup. Journal of Chromatography, 407:393-8 https://doi.org/10.1016/S0021-9673(01)92643-3 DOI: https://doi.org/10.1016/S0021-9673(01)92643-3
Moss, M., and Long, M. (2002). Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Additives & Contaminants 19, 387-399. https://doi.org/10.1080/02652030110091163 DOI: https://doi.org/10.1080/02652030110091163
Muñoz, K., Wagner, M., Pauli, F., Christ, J., and Reese, G. (2021). Knowledge and behavioral habits to reduce mycotoxin dietary exposure at household level in a cohort of German university students. Toxins 13, 760. https://doi.org/10.3390/toxins13110760 DOI: https://doi.org/10.3390/toxins13110760
Mutegi, C., Cotty, P., and Bandyopadhyay, R. (2018). Prevalence and mitigation of aflatoxins in Kenya (1960-to date). World mycotoxin journal 11, 341-358. DOI: https://doi.org/10.3920/WMJ2018.2362
Nathanail, A. V., Sarikaya, E., Jestoi, M., Godula, M., and Peltonen, K. (2014). Determination of deoxynivalenol and deoxynivalenol-3-glucoside in wheat and barley using liquid chromatography coupled to mass spectrometry: On-line clean-up versus conventional sample preparation techniques. Journal of Chromatography A 1374, 31-39. https://doi.org/10.1016/j.chroma.2014.11.046 DOI: https://doi.org/10.1016/j.chroma.2014.11.046
Nathanail, A. V., Syvähuoko, J., Malachová, A., Jestoi, M., Varga, E., Michlmayr, H., Adam, G., Sieviläinen, E., Berthiller, F., and Peltonen, K. (2015a). Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass spectrometric method. Analytical and Bioanalytical Chemistry 407, 4745-4755. https://doi.org/10.1007/s00216-015-8676-4 DOI: https://doi.org/10.1007/s00216-015-8676-4
Navale, V., Vamkudoth, K. R., Ajmera, S., and Dhuri, V. (2021). Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicology reports 8, 1008-1030. https://doi.org/10.1016/j.toxrep.2021.04.013 DOI: https://doi.org/10.1016/j.toxrep.2021.04.013
Ncube, E., Flett, B. C., Waalwijk, C., and Viljoen, A. (2011). Fusarium spp. and levels of fumonisins in maize produced by subsistence farmers in South Africa. South African Journal of Science 107, 1-7. DOI: https://doi.org/10.4102/sajs.v107i3/4.367
Nelson, P. E., Dignani, M. C., and Anaissie, E. J. (1994). Taxonomy, biology, and clinical aspects of Fusarium species. Clinical microbiology reviews 7, 479-504. https://doi.org/10.1128/cmr.7.4.479 DOI: https://doi.org/10.1128/CMR.7.4.479
No, C. R. (1881). 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union.
Nyaga, P. (2010). Report on Aflatoxin contamination in Maize. Ministry of Agriculture.
Obradović, A., Stanković, S., Krnjaja, V., Kostadinović, M., Ristić, D., and Jauković, M. (2022). Contamination of maize kernels with mycotoxins after harvest. In "Book of Abstracts of the XIII International Scientific Agriculture Symposium “AGROSYM 2022”, Jahorina, October 06-09, 2022, Bosnia and Herzegovina", pp. 195-195.
Odjo, S., Alakonya, A. E., Rosales-Nolasco, A., Molina, A. L., Munoz, C., and Palacios-Rojas, N. (2022). Occurrence and postharvest strategies to help mitigate aflatoxins and fumonisins in maize and their co-exposure to consumers in Mexico and Central America. Food Control 138, 108968. https://doi.org/10.1016/j.foodcont.2022.108968 DOI: https://doi.org/10.1016/j.foodcont.2022.108968
Oguz, H. (2017). Mycotoxins and their importance. Turkiye Klinikleri J Vet Sci Pharmacol Toxicol-Special Topics 3, 113-119. https://doi.org/10.3390/toxins14090592 DOI: https://doi.org/10.3390/toxins14090592
Okoth, S., De Boevre, M., Vidal, A., Diana Di Mavungu, J., Landschoot, S., Kyallo, M., Njuguna, J., Harvey, J., and De Saeger, S. (2018). Genetic and toxigenic variability within Aspergillus flavus population isolated from maize in two diverse environments in Kenya. Frontiers in Microbiology 9, 57. https://doi.org/10.3389/fmicb.2018.00057 DOI: https://doi.org/10.3389/fmicb.2018.00057
Ostry, V., Malir, F., and Ruprich, J. (2013). Producers and important dietary sources of ochratoxin A and citrinin. Toxins 5, 1574-1586. https://doi.org/10.3390/toxins5091574 DOI: https://doi.org/10.3390/toxins5091574
Ostry, V., Malir, F., Toman, J., and Grosse, Y. (2017). Mycotoxins as human carcinogens—the IARC Monographs classification. Mycotoxin Research 33, 65-73. https://doi.org/10.1007/s12550-016-0265-7 DOI: https://doi.org/10.1007/s12550-016-0265-7
Otto, D. A., Hudnell, H. K., House, D. E., Mølhave, L., and Counts, W. (1992). Exposure of humans to a volatile organic mixture. I. Behavioral assessment. Archives of Environmental Health: An International Journal 47, 23-30. https://doi.org/10.1080/00039896.1992.9935940 DOI: https://doi.org/10.1080/00039896.1992.9935940
Ouf, S. A., Basher, A. H., and Mohamed, A. A. H. (2015). Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. Journal of the Science of Food and Agriculture 95, 3204-3210. https://doi.org/10.1002/jsfa.7060 DOI: https://doi.org/10.1002/jsfa.7060
Papatheocharidou, C., and Samanidou, V. (2023). Two-dimensional high-performance liquid chromatography as a powerful tool for bioanalysis: The paradigm of antibiotics. Molecules 28, 5056. https://doi.org/10.3390/molecules28135056 DOI: https://doi.org/10.3390/molecules28135056
Park, D. L., and Price, W. D. (2001). Reduction of aflatoxin hazards using ammoniation. DOI: https://doi.org/10.1007/978-1-4613-0161-5_4
Pavicich, M. A., De Boevre, M., Vidal, A., Iturmendi, F., Mikula, H., Warth, B., Marko, D., De Saeger, S., and Patriarca, A. (2020). Fate of free and modified Alternaria mycotoxins during the production of apple concentrates. Food Control 118, 107388. https://doi.org/10.1016/j.foodcont.2020.107388 DOI: https://doi.org/10.1016/j.foodcont.2020.107388
Peers, F., and Linsell, C. (1973). Dietary aflatoxins and liver cancer--a population based study in Kenya. British Journal of Cancer 27, 473. https://doi.org/10.1038/bjc.1973.60 DOI: https://doi.org/10.1038/bjc.1973.60
Peltonen, K., El-Nezami, H., Haskard, C., Ahokas, J., and Salminen, S. (2001). Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. Journal of Dairy Science 84, 2152-2156. https://doi.org/10.3168/jds.S0022-0302(01)74660-7 DOI: https://doi.org/10.3168/jds.S0022-0302(01)74660-7
Pereira, V., Fernandes, J., and Cunha, S. (2014). Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends in Food Science & Technology 36, 96-136. https://doi.org/10.1016/j.tifs.2014.01.005 DOI: https://doi.org/10.1016/j.tifs.2014.01.005
Pfohl‐Leszkowicz, A., and Manderville, R. A. (2007). Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Molecular Nutrition & Food Research 51, 61-99. https://doi.org/10.1002/mnfr.200600137 DOI: https://doi.org/10.1002/mnfr.200600137
Piemontese, M. E. (2005). Misurazioni quantitative degli stili personali e indici di leggibilità. In "Parole e Numeri. Analisi quantitative dei fatti di lingua", pp. 377-397. Aracne.
Pillay, D., Chuturgoon, A. A., Nevines, E., Manickum, T., Deppe, W., and Dutton, M. F. (2002). The quantitative analysis of zearalenone and its derivatives in plasma of patients with breast and cervical cancer. Clin Chem Lab Med 40(9):946-51. https://doi.org/10.1515/CCLM.2002.166 DOI: https://doi.org/10.1515/CCLM.2002.166
Platts-Mills, T. (1993). Aerobiology and inhalant allergens: indoor allergens. Allergy: principles and practice. St Louis: The CV Mosby Company, 514-528.
Probst, C., Callicott, K., and Cotty, P. (2012). Deadly strains of Kenyan Aspergillus are distinct from other aflatoxin producers. European Journal of Plant Pathology 132, 419-429. https://doi.org/10.1007/s10658-011-9887-y DOI: https://doi.org/10.1007/s10658-011-9887-y
Quality, A. O. o. t. U. N. F., Service, S., Production, A. O. o. t. U. N. P., Division, P., Zoonoses, W. H. O. F. S. D., Diseases, F., and Organization, W. H. (2007). "FAO/WHO framework for the provision of scientific advice on food safety and nutrition," Food & Agriculture Org.
Rahmani, A., Jinap, S., and Soleimany, F. (2009). Qualitative and quantitative analysis of mycotoxins. Comprehensive Reviews in Food Science and Food Safety 8, 202-251. https://doi.org/10.1111/j.1541-4337.2009.00079.x DOI: https://doi.org/10.1111/j.1541-4337.2009.00079.x
Rai, A., Dixit, S., Singh, S. P., Gautam, N. K., Das, M., and Tripathi, A. (2018). Presence of zearalenone in cereal grains and its exposure risk assessment in Indian population. Journal of Food Science 83, 3126-3133. https://doi.org/10.1111/1750-3841.14404 DOI: https://doi.org/10.1111/1750-3841.14404
Ramirez, M. L., Chulze, S., and Magan, N. (2006). Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. International Journal of Food Microbiology 106, 291-296. https://doi.org/10.1016/j.ijfoodmicro.2005.09.004 DOI: https://doi.org/10.1016/j.ijfoodmicro.2005.09.004
Rao, B. L., and Husain, A. (1985). Presence of cyclopiazonic acid in kodo millet (Paspalum scrobiculatum) causing ‘kodua poisoning’in man and its production by associated fungi. Mycopathologia 89, 177-180. https://doi.org/10.1007/BF00447028 DOI: https://doi.org/10.1007/BF00447028
Reddy, L., and Bhoola, K. (2010). Ochratoxins—Food contaminants: Impact on human health. Toxins 2, 771-779. https://doi.org/10.3390/toxins2040771 DOI: https://doi.org/10.3390/toxins2040771
Reddy, S., Kiran Mayi, D., Uma Reddy, M., Thirumala-Devi, K., and Reddy, D. (2001). Aflatoxins B1 in different grades of chillies (Capsicum annum L.) in India as determined by indirect competitive-ELISA. Food additives & Contaminants 18, 553-558. https://doi.org/10.1080/02652030119491 DOI: https://doi.org/10.1080/02652030119491
Riley, R. T., and Merrill, A. H. (2019). Ceramide synthase inhibition by fumonisins: a perfect storm of perturbed sphingolipid metabolism, signaling, and disease [S]. Journal of Lipid Research 60, 1183-1189. DOI: https://doi.org/10.1194/jlr.S093815
Rocha, O., Ansari, K., and Doohan, F. (2005). Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food additives and contaminants 22, 369-378. https://doi.org/10.1080/02652030500058403 DOI: https://doi.org/10.1080/02652030500058403
Rodrigues, I. (2014). A review on the effects of mycotoxins in dairy ruminants. Animal Production Science 54, 1155-1165. https://doi.org/10.1071/AN13492 DOI: https://doi.org/10.1071/AN13492
Rotimi, O. A., Rotimi, S. O., Oluwafemi, F., Ademuyiwa, O., and Balogun, E. A. (2018). Oxidative stress in extrahepatic tissues of rats co-exposed to aflatoxin B1 and low protein diet. Toxicological research 34, 211-220. https://doi.org/10.5487/TR.2018.34.3.211 DOI: https://doi.org/10.5487/TR.2018.34.3.211
Sacco, C., Donato, R., Zanella, B., Pini, G., Pettini, L., Marino, M. F., Rookmin, A. D., and Marvasi, M. (2020). Mycotoxins and flours: Effect of type of crop, organic production, packaging type on the recovery of fungal genus and mycotoxins. International Journal of Food Microbiology 334, 108808. https://doi.org/10.1016/j.ijfoodmicro.2020.108808 DOI: https://doi.org/10.1016/j.ijfoodmicro.2020.108808
Sadhasivam, S., Barda, O., Zakin, V., Reifen, R., and Sionov, E. (2021). Rapid detection and quantification of patulin and citrinin contamination in fruits. Molecules 26, 4545. https://doi.org/10.3390/molecules26154545 DOI: https://doi.org/10.3390/molecules26154545
Saha, D., Acharya, D., Roy, D., Shrestha, D., and Dhar, T. K. (2007). Simultaneous enzyme immunoassay for the screening of aflatoxin B1 and ochratoxin A in chili samples. Analytica chimica acta 584, 343-349. https://doi.org/10.1016/j.aca.2006.11.042 DOI: https://doi.org/10.1016/j.aca.2006.11.042
Santpoort, R. (2020). The drivers of maize area expansion in Sub-Saharan Africa. How policies to boost maize production overlook the interests of smallholder farmers. Land 9, 68. https://doi.org/10.3390/land9030068 DOI: https://doi.org/10.3390/land9030068
Sarrocco, S., Mauro, A., and Battilani, P. (2019). Use of competitive filamentous fungi as an alternative approach for mycotoxin risk reduction in staple cereals: state of art and future perspectives. Toxins 11, 701. https://doi.org/10.3390/toxins11120701 DOI: https://doi.org/10.3390/toxins11120701
Schlüter, O., Ehlbeck, J., Hertel, C., Habermeyer, M., Roth, A., Engel, K. H., Holzhauser, T., Knorr, D., and Eisenbrand, G. (2013). Opinion on the use of plasma processes for treatment of foods. Molecular Nutrition & Food Research 57, 920-927. https://doi.org/10.1002/mnfr.201300039 DOI: https://doi.org/10.1002/mnfr.201300039
Schollenberger, M., Müller, H.-M., Rüfle, M., Suchy, S., Planck, S., and Drochner, W. (2005). Survey of Fusarium toxins in foodstuffs of plant origin marketed in Germany. International Journal of Food Microbiology 97, 317-326. https://doi.org/10.1016/j.ijfoodmicro.2004.05.001 DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.05.001
Science, C. f. A. (2003). "Mycotoxins: risks in plant, animal, and human systems," Council for Agricultural Science & Technology (Cast).
Shen, B. (2003). Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Current opinion in Chemical Biology 7, 285-295. https://doi.org/10.1016/S1367-5931(03)00020-6 DOI: https://doi.org/10.1016/S1367-5931(03)00020-6
Shephard, G. (2011). Fusarium mycotoxins and human health. Plant Breeding and Seed Science 64, 113. DOI: https://doi.org/10.2478/v10129-011-0034-x
Shephard, G. S. (2016). Current status of mycotoxin analysis: a critical review. Journal of AOAC International 99, 842-848. https://doi.org/10.5740/jaoacint.16-0111 DOI: https://doi.org/10.5740/jaoacint.16-0111
Singh, J., and Mehta, A. (2020). Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Science & Nutrition 8, 2183-2204. https://doi.org/10.1002/fsn3.1474 DOI: https://doi.org/10.1002/fsn3.1474
Sobotka, T., Brodie, R., and Spaid, S. (1978). Neurobehavioral studies of tremorgenic mycotoxins verruculogen and penitrem A. Pharmacology 16, 287-294. https://doi.org/10.1159/000136781 DOI: https://doi.org/10.1159/000136781
Stephany, R. W. (2010). Hormonal growth promoting agents in food producing animals. Doping in sports: Biochemical principles, effects and analysis, 355-367. https://doi.org/10.1007/978-3-540-79088-4_16 DOI: https://doi.org/10.1007/978-3-540-79088-4_16
Steyn, P. S. (1995). Mycotoxins, general view, chemistry and structure. Toxicology letters 82, 843-851. https://doi.org/10.1016/0378-4274(95)03525-7 DOI: https://doi.org/10.1016/0378-4274(95)03525-7
Stroka, J., Van Otterdijk, R., and Anklam, E. (2000). Immunoaffinity column clean-up prior to thin-layer chromatography for the determination of aflatoxins in various food matrices. Journal of chromatography A 904, 251-256. https://doi.org/10.1016/S0021-9673(00)00930-4 DOI: https://doi.org/10.1016/S0021-9673(00)00930-4
Stubblefield, R. D. (1987). Optimum Conditions for Formation of Aflatoxin Mj-Trifiuoroacetic Acid Derivative. Journal of the Association of Official Analytical Chemists 70, 1047-1049. https://doi.org/10.1093/jaoac/70.6.1047 DOI: https://doi.org/10.1093/jaoac/70.6.1047
Sugita-Konishi, Y., Nakajima, M., Tabata, S., Ishikuro, E., Tanaka, T., Norizuki, H., Itoh, Y., Aoyama, K., Fujita, K., and Kai, S. (2006). Occurrence of aflatoxins, ochratoxin A, and fumonisins in retail foods in Japan. Journal of Food Protection 69, 1365-1370. https://doi.org/10.4315/0362-028X-69.6.1365 DOI: https://doi.org/10.4315/0362-028X-69.6.1365
Sun, H., Ho, C. L., Ding, F., Soehano, I., Liu, X.-W., and Liang, Z.-X. (2012). Synthesis of (R)-mellein by a partially reducing iterative polyketide synthase. Journal of the American Chemical Society 134, 11924-11927. https://doi.org/10.1021/ja304905e DOI: https://doi.org/10.1021/ja304905e
Ten Bosch, L., Pfohl, K., Avramidis, G., Wieneke, S., Viöl, W., and Karlovsky, P. (2017). Plasma-based degradation of mycotoxins produced by Fusarium, Aspergillus and Alternaria species. Toxins 9, 97. https://doi.org/10.3390/toxins9030097 DOI: https://doi.org/10.3390/toxins9030097
Tola, M., and Kebede, B. (2016). Occurrence, importance and control of mycotoxins: A review. Cogent Food & Agriculture 2, 1191103. https://doi.org/10.1080/23311932.2016.1191103 DOI: https://doi.org/10.1080/23311932.2016.1191103
Torović, L. (2018). Aflatoxins and ochratoxin A in flour: A survey of the Serbian retail market. Food Additives & Contaminants: Part B 11, 26-32. https://doi.org/10.1080/19393210.2017.1391335 DOI: https://doi.org/10.1080/19393210.2017.1391335
Trucksess, M. W., Brumley, W. C., and Nesheim, S. (1984). Rapid quantitation and confirmation of aflatoxins in corn and peanut butter, using a disposable silica gel column, thin layer chromatography, and gas chromatography/mass spectrometry. Journal of the Association of Official Analytical Chemists 67, 973-975. https://doi.org/10.1093/jaoac/67.5.973 DOI: https://doi.org/10.1093/jaoac/67.5.973
Trucksess, M. W., and Tang, Y. (2001). Solid phase extraction method for patulin in apple juice and unfiltered apple juice. Mycotoxin Protocols, 205-213. https://doi.org/10.1093/jaoac/82.5.1109 DOI: https://doi.org/10.1385/1-59259-064-0:205
Turner, N. W., Subrahmanyam, S., and Piletsky, S. A. (2009). Analytical methods for determination of mycotoxins: a review. Analytica chimica acta 632, 168-180. https://doi.org/10.1016/j.aca.2008.11.010 DOI: https://doi.org/10.1016/j.aca.2008.11.010
Turner, P. C., Sylla, A., Diallo, M. S., CASTEGNARO, J. J., Hall, A. J., and Wild, C. P. (2002). The role of aflatoxins and hepatitis viruses in the etiopathogenesis of hepatocellular carcinoma: A basis for primary prevention in Guinea–Conakry, West Africa. Journal of Gastroenterology and Hepatology 17, S441-S448. https://doi.org/10.1046/j.1440-1746.17.s4.7.x DOI: https://doi.org/10.1046/j.1440-1746.17.s4.7.x
Van Egmond, H., Heisterkamp, S., and Paulsch, W. (1991). EC‐collaborative study on the determination of aflatoxin B1 in animal feeding stuffs. Food Additives & Contaminants 8, 17-29. https://doi.org/10.1080/02652039109373952 DOI: https://doi.org/10.1080/02652039109373952
Van Egmond, H. P. (2002). Worldwide regulations for mycotoxins. In "Mycotoxins and food safety", pp. 257-269. Springer. https://doi.org/10.1007/978-1-4615-0629-4_27 DOI: https://doi.org/10.1007/978-1-4615-0629-4_27
Varga, J., Kocsubé, S., Péteri, Z., Vágvölgyi, C., and Tóth, B. (2010). Chemical, physical and biological approaches to prevent ochratoxin induced toxicoses in humans and animals. Toxins 2, 1718-1750. https://doi.org/10.3390/toxins2071718 DOI: https://doi.org/10.3390/toxins2071718
Velasco, A. M. R., Lesmes, I. B., Perales, A. D., Izquierdo, Á. G., Muñoz, M. J. G., Arribas, V. M., del Puy Portillo Baquedano, M., and Sánchez, S. P. (2023). “Report of the Scientific Committee of the Spanish Agency for Food Safety and Nutrition (AESAN) on the available evidence in relation to the potential obesogenic activity of certain chemical compounds that may be present in foods,” Rep. No. 2940-1399. Wiley Online Library. https://doi.org/10.2903/fr.efsa.2023.FR-0011 DOI: https://doi.org/10.2903/fr.efsa.2023.FR-0011
Ventura, M., Gómez, A., Anaya, I., Díaz, J., Broto, F., Agut, M., and Comellas, L. (2004). Determination of aflatoxins B1, G1, B2 and G2 in medicinal herbs by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 1048, 25-29. https://doi.org/10.1016/j.chroma.2004.07.033 DOI: https://doi.org/10.1016/j.chroma.2004.07.033
Vučković, J., Bodroža‐Solarov, M., Vujić, Đ., Bočarov‐Stančić, A., and Bagi, F. (2013). The protective effect of hulls on the occurrence of Alternaria mycotoxins in spelt wheat. Journal of the Science of Food and Agriculture 93, 1996-2001. https://doi.org/10.1002/jsfa.6005 DOI: https://doi.org/10.1002/jsfa.6005
Wan, L. Y. M., Turner, P. C., and El-Nezami, H. (2013). Individual and combined cytotoxic effects of Fusarium toxins (deoxynivalenol, nivalenol, zearalenone and fumonisins B1) on swine jejunal epithelial cells. Food and Chemical Toxicology 57, 276-283. https://doi.org/10.1016/j.fct.2013.03.034 DOI: https://doi.org/10.1016/j.fct.2013.03.034
Wang, S., Ren, H., Fan, C., Lin, Q., Liu, M., and Tian, J. (2023a). Ochratoxin A induces renal cell ferroptosis by disrupting iron homeostasis and increasing ROS. Journal of Agricultural and Food Chemistry 72, 1734-1744. https://doi.org/10.1021/acs.jafc.3c04495 DOI: https://doi.org/10.1021/acs.jafc.3c04495
Wang, Y., Wang, X., and Li, Q. (2023b). Aflatoxin B1 in poultry liver: Toxic mechanism. Toxicon 233, 107262. https://doi.org/10.1016/j.toxicon.2023.107262 DOI: https://doi.org/10.1016/j.toxicon.2023.107262
Wang, Y., Wang, X., Wang, S., Fotina, H., and Wang, Z. (2022). A novel lateral flow immunochromatographic assay for rapid and simultaneous detection of aflatoxin b1 and zearalenone in food and feed samples based on highly sensitive and specific monoclonal antibodies. Toxins 14, 615. https://doi.org/10.3390/toxins14090615 DOI: https://doi.org/10.3390/toxins14090615
Waśkiewicz, A., Beszterda, M., and Goliński, P. (2012). Occurrence of fumonisins in food–an interdisciplinary approach to the problem. Food Control 26, 491-499. https://doi.org/10.1016/j.foodcont.2012.02.007 DOI: https://doi.org/10.1016/j.foodcont.2012.02.007
Wen, J., Kong, W., Hu, Y., Wang, J., and Yang, M. (2014). Multi-mycotoxins analysis in ginger and related products by UHPLC-FLR detection and LC-MS/MS confirmation. Food Control 43, 82-87. https://doi.org/10.1016/j.foodcont.2014.02.038 DOI: https://doi.org/10.1016/j.foodcont.2014.02.038
Wild, C., Miller, J., and Groopman, J. (2015). Effects of aflatoxins on aflatoxicosis and liver cancer. Mycotoxin Control in Low-and Middle-Income Countries. International Agency for Research on Cancer.
Wojtacha, P., Trybowski, W., Podlasz, P., Żmigrodzka, M., Tyburski, J., Polak-Śliwińska, M., Jakimiuk, E., Bakuła, T., Baranowski, M., and Żuk-Gołaszewska, K. (2021). Effects of a low dose of T-2 toxin on the percentage of T and B lymphocytes and cytokine secretion in the porcine ileal wall. Toxins 13, 277. https://doi.org/10.3390/toxins13040277 DOI: https://doi.org/10.3390/toxins13040277
Wu, Y.-Z., Lu, F.-P., Jiang, H.-L., Tan, C.-P., Yao, D.-S., Xie, C.-F., and Liu, D.-L. (2015). The furofuran-ring selectivity, hydrogen peroxide-production and low Km value are the three elements for highly effective detoxification of aflatoxin oxidase. Food and Chemical Toxicology 76, 125-131. https://doi.org/10.3390/toxins13040277 DOI: https://doi.org/10.1016/j.fct.2014.12.004
Xie, S. (2005). "Synthesis, diastereomer identification and enantiomer resolution of non-steroidal estrogenic carboxylic acids and lactones for a structure-activity correlation study," Southern Illinois University at Carbondale.
Yao, Y., Gao, S., Ding, X., Li, P., and Zhang, Q. (2021). The microbial population structure and function of peanut peanut and their effects on aflatoxin contamination. LWT 148, 111285. https://doi.org/10.1016/j.lwt.2021.111285 DOI: https://doi.org/10.1016/j.lwt.2021.111285
Yoshinari, T., Ohashi, H., Abe, R., Kaigome, R., Ohkawa, H., and Sugita-Konishi, Y. (2015). Development of a rapid method for the quantitative determination of deoxynivalenol using Quenchbody. Analytica Chimica Acta 888, 126-130. https://doi.org/10.1016/j.aca.2015.07.020 DOI: https://doi.org/10.1016/j.aca.2015.07.020
Yu, J., Chang, P.-K., Ehrlich, K. C., Cary, J. W., Bhatnagar, D., Cleveland, T. E., Payne, G. A., Linz, J. E., Woloshuk, C. P., and Bennett, J. W. (2004). Clustered pathway genes in aflatoxin biosynthesis. Applied and Environmental Microbiology 70, 1253-1262. https://doi.org/10.1128/AEM.70.3.1253-1262.2004 DOI: https://doi.org/10.1128/AEM.70.3.1253-1262.2004
Zadravec, M., Markov, K., Lešić, T., Frece, J., Petrović, D., and Pleadin, J. (2022). Biocontrol methods in avoidance and downsizing of mycotoxin contamination of food crops. Processes 10, 655. https://doi.org/10.3390/pr10040655 DOI: https://doi.org/10.3390/pr10040655
Zain, M. E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society 15, 129-144. https://doi.org/10.1016/j.jscs.2010.06.006 DOI: https://doi.org/10.1016/j.jscs.2010.06.006
Zhang, C., Qu, Z., Hou, J., and Yao, Y. (2024). Contamination and control of mycotoxins in grain and oil crops. Microorganisms 12, 567. https://doi.org/10.3390/microorganisms12030567 DOI: https://doi.org/10.3390/microorganisms12030567
Zhang, H., Dong, M., Yang, Q., Apaliya, M. T., Li, J., and Zhang, X. (2016). Biodegradation of zearalenone by Saccharomyces cerevisiae: Possible involvement of ZEN responsive proteins of the yeast. Journal of Proteomics 143, 416-423. https://doi.org/10.1016/j.jprot.2016.04.017 DOI: https://doi.org/10.1016/j.jprot.2016.04.017
Zhang, K., Flannery, B. M., Oles, C. J., and Adeuya, A. (2018). Mycotoxins in infant/toddler foods and breakfast cereals in the US retail market. Food Additives & Contaminants: Part B 11, 183-190. https://doi.org/10.1080/19393210.2018.1451397 DOI: https://doi.org/10.1080/19393210.2018.1451397
Zhao, Z., Rao, Q., Song, S., Liu, N., Han, Z., Hou, J., and Wu, A. (2014). Simultaneous determination of major type B trichothecenes and deoxynivalenol-3-glucoside in animal feed and raw materials using improved DSPE combined with LC-MS/MS. Journal of Chromatography B 963, 75-82. https://doi.org/10.1016/j.jchromb.2014.05.053 DOI: https://doi.org/10.1016/j.jchromb.2014.05.053
Zheng, M. Z., Richard, J. L., and Binder, J. (2006). A review of rapid methods for the analysis of mycotoxins. Mycopathologia 161, 261-273. https://doi.org/10.1007/s11046-006-0215-6 DOI: https://doi.org/10.1007/s11046-006-0215-6
Zhu, L., Zhang, B., Dai, Y., Li, H., and Xu, W. (2017). A review: epigenetic mechanism in ochratoxin a toxicity studies. Toxins 9, 113. https://doi.org/10.3390/toxins9040113 DOI: https://doi.org/10.3390/toxins9040113
Zinedine, A., Soriano, J. M., Moltó, J. C., and Manes, J. (2007). Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food and chemical toxicology 45, 1-18. https://doi.org/10.1016/j.fct.2006.07.030 DOI: https://doi.org/10.1016/j.fct.2006.07.030
Zöllner, P., and Mayer-Helm, B. (2006). Trace mycotoxin analysis in complex biological and food matrices by liquid chromatography–atmospheric pressure ionisation mass spectrometry. Journal of Chromatography A 1136, 123-169. https://doi.org/10.1016/j.chroma.2006.09.055 DOI: https://doi.org/10.1016/j.chroma.2006.09.055
Zou, Z., He, Z., Li, H., Han, P., Tang, J., Xi, C., Li, Y., Zhang, L., and Li, X. (2012). Development and application of a method for the analysis of two trichothecenes: Deoxynivalenol and T-2 toxin in meat in China by HPLC–MS/MS. Meat Science 90, 613-617. https://doi.org/10.1016/j.meatsci.2011.10.002 DOI: https://doi.org/10.1016/j.meatsci.2011.10.002
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2026 R SAFDAR, M IMRAN, E MUSHTAQ, A NASIR

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



