MOLECULAR CHARACTERIZATION OF MULTI DRUG RESISTANT ESCHERICHIA COLI CAUSING BOVINE MASTITIS
DOI:
https://doi.org/10.64013/bbasr.v2026i1.111Keywords:
mastitis, Escherichia coli, multi-drug resistant, antibiotics, infectionAbstract
Different antibiotics are used to treat mastitis in dairy cows that is caused by Escherichia coli (E. coli). Addressing this threat requires a combination of a multidisciplinary approach involving human, animal, and environmental health. Because antibiotic agents used in veterinary medication may be the same or similar to those in human medication. Mastitis is a common and economically important disease in dairy cattle. It remains one of the most common reasons for the extensive use of antimicrobials in dairy farms, leading to the emergence of antimicrobial-resistant pathogens. The current study aimed to investigate the incidence of multidrug-resistant E. coli in dairy milk samples collected from Mastitis and healthy milk in the district of Dir Lower, characterize the multi-drug-resistant (MDR) E. coli, and molecular detection of the predominant ESBL-encoding genes by using PCR assay. All confirmed (17) samples of ESBL-encoding E. coli strains were tested via conventional PCR for the molecular screening of blaCTX-M gene, blaTEM gene, and blaSHV gene from mastitic milk isolates. Out of 17 isolates, 6 (35.29%) isolates were positive for co-existence of blaCTX-M gene and blaTEM gene, 5 (29.41%) isolates were positive for single existence of blaCTX-M, 2 (11.76%) isolates were positive for single existence of blaTEM, 4 (23.52%) isolates were positive for blaSHV gene. In this study, the most predominant gene was blaCTX-M gene, showing (64.70%) followed by blaTEM gene (47.05%) and blaSHV gene (23.52%). Eleven different antibiotics were used in this study to check their susceptibility pattern. The isolated strains were highly resistant to Ampicillin (100 %) and highly sensitive to Levofloxacin (100%), Ciprofloxacin (100%), and Chloramphenicol (100%). The incidence of these genes in indicator organisms from milk samples, enforced the potential of food-producing animals as sources of MDR organism’s infection in humans via the food chain. Thus, there is a need for the adoption of a tripartite One Health approach in surveillance to control antimicrobial resistance, and antibiotic sensitivity must be checked before treatment of any infection.
Downloads
References
Abrar, S., Hussain, S., Khan, R. A., Ain, N. U., Haider, H., and Riaz, S. (2018). Prevalence of extended-spectrum-β-lactamase-producing Enterobacteriaceae: first systematic meta-analysis report from Pakistan. Antimicrobial Resistance & Infection Control 7, 1-11 https://doi.org/10.1186/s13756-018-0309-1. DOI: https://doi.org/10.1186/s13756-018-0309-1
Al-Agamy, M. H., Shibl, A. M., and Tawfik, A. F. (2009). Prevalence and molecular characterization of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in Riyadh, Saudi Arabia. Annals of Saudi medicine 29, 253-257 https://doi.org/10.4103/0256-4947.55306. DOI: https://doi.org/10.4103/0256-4947.55306
Ali, T., ur Rahman, S., Zhang, L., Shahid, M., Han, D., Gao, J., Zhang, S., Ruegg, P. L., Saddique, U., and Han, B. (2017). Characteristics and genetic diversity of multi-drug resistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolated from bovine mastitis. Oncotarget 8, 90144 https://doi.org/10.18632/oncotarget.21496. DOI: https://doi.org/10.18632/oncotarget.21496
Ali, T., Zhang, L., Shahid, M., Zhang, S., Liu, G., Gao, J., and Han, B. (2016). ESBL-producing Escherichia coli from cows suffering mastitis in China contain clinical class 1 integrons with CTX-M linked to ISCR1. Frontiers in Microbiology 7, 1931 https://doi.org/10.3389/fmicb.2016.01931. DOI: https://doi.org/10.3389/fmicb.2016.01931
Chang, F.-Y., Siu, L., Fung, C.-P., Huang, M.-H., and Ho, M. (2001). Diversity of SHV and TEM β-lactamases in Klebsiella pneumoniae: gene evolution in northern Taiwan and two novel β-lactamases, SHV-25 and SHV-26. Antimicrobial agents and chemotherapy 45, 2407-2413 https://doi.org/10.1128/aac.45.9.2407-2413.2001. DOI: https://doi.org/10.1128/AAC.45.9.2407-2413.2001
Dahmen, S., Métayer, V., Gay, E., Madec, J.-Y., and Haenni, M. (2013). Characterization of extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Veterinary microbiology 162, 793-799 https://doi.org/10.1016/j.vetmic.2012.10.015. DOI: https://doi.org/10.1016/j.vetmic.2012.10.015
Feng, Y., ZHANG, S.-d., SHANG, X.-f., WANG, X.-r., Ling, W., YAN, Z.-t., and LI, H.-s. (2018). Prevalence and characteristics of extended spectrum β-lactamase-producing Escherichia coli from bovine mastitis cases in China. Journal of Integrative Agriculture 17, 1246-1251 https://doi.org/10.1016/S2095-3119(17)61830-6. DOI: https://doi.org/10.1016/S2095-3119(17)61830-6
Freitag, C., Michael, G. B., Kadlec, K., Hassel, M., and Schwarz, S. (2017). Detection of plasmid-borne extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from bovine mastitis. Veterinary microbiology 200, 151-156 https://doi.org/10.1016/j.vetmic.2016.08.010. DOI: https://doi.org/10.1016/j.vetmic.2016.08.010
Geser, N., Stephan, R., and Hächler, H. (2012). Occurrence and characteristics of extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC veterinary research 8, 1-9 http://www.biomedcentral.com/1746-6148/8/21. DOI: https://doi.org/10.1186/1746-6148-8-21
Kanokudom, S., Assawakongkarat, T., Akeda, Y., Ratthawongjirakul, P., Chuanchuen, R., and Chaichanawongsaroj, N. (2021). Rapid detection of extended spectrum β-lactamase producing Escherichia coli isolated from fresh pork meat and pig cecum samples using multiplex recombinase polymerase amplification and lateral flow strip analysis. Plos one 16, e0248536 https://doi.org/10.1371/journal.pone.0248536. DOI: https://doi.org/10.1371/journal.pone.0248536
Kaper, J. B., Nataro, J. P., and Mobley, H. L. (2004). Pathogenic escherichia coli. Nature reviews microbiology 2, 123-140 doi:10.1038/nrmicro818. DOI: https://doi.org/10.1038/nrmicro818
Kempf, F., Slugocki, C., Blum, S. E., Leitner, G., and Germon, P. (2016). Genomic comparative study of bovine mastitis Escherichia coli. PloS one 11, e0147954https://doi.org/10.1371/journal.pone.0147954. DOI: https://doi.org/10.1371/journal.pone.0147954
Liu, H., Wang, Y., Wang, G., Xing, Q., Shao, L., Dong, X., Sai, L., Liu, Y., and Ma, L. (2015). The prevalence of Escherichia coli strains with extended spectrum beta-lactamases isolated in China. Frontiers in microbiology 6, 335 https://doi.org/10.3389/fmicb.2015.00335. DOI: https://doi.org/10.3389/fmicb.2015.00335
Mac Faddin, J. F. (1985). "Media for isolation-cultivation-identification-maintenance of medical bacteria," Williams & Wilkins https://lccn.loc.gov/84011986.
Merrill, C., Ensermu, D., Abdi, R., Gillespie, B., Vaughn, J., Headrick, S., Hash, K., Walker, T., Stone, E., and Dego, O. K. (2019). Immunological responses and evaluation of the protection in dairy cows vaccinated with staphylococcal surface proteins. Veterinary immunology and immunopathology 214, 109890 https://doi.org/10.1016/j.vetimm.2019.109890. DOI: https://doi.org/10.1016/j.vetimm.2019.109890
Mohsin, M., Raza, S., Schaufler, K., Roschanski, N., Sarwar, F., Semmler, T., Schierack, P., and Guenther, S. (2017). High prevalence of CTX-M-15-Type ESBL-producing E. coli from migratory avian species in Pakistan. Frontiers in microbiology 8, 2476 https://doi.org/10.3389/fmicb.2017.02476. DOI: https://doi.org/10.3389/fmicb.2017.02476
Neuner, E. A., Sekeres, J., Hall, G. S., and van Duin, D. (2012). Experience with fosfomycin for treatment of urinary tract infections due to multidrug-resistant organisms. Antimicrobial agents and chemotherapy 56, 5744-5748 https://doi.org/10.1128/aac.00402-12. DOI: https://doi.org/10.1128/AAC.00402-12
Pallett, A., and Hand, K. (2010). Complicated urinary tract infections: practical solutions for the treatment of multiresistant Gram-negative bacteria. Journal of antimicrobial chemotherapy 65, iii25-iii33 .https://doi.org/10.1093/jac/dkq DOI: https://doi.org/10.1093/jac/dkq298
Paterson, D. L., and Bonomo, R. A. (2005). Clinical Microbiology Reviews. Clin. Microbiol. Rev. 18, 657-686 https://doi.org/10.1128/cmr.18.4.657-686.2005. DOI: https://doi.org/10.1128/CMR.18.4.657-686.2005
Pehlivanoglu, F., Turutoglu, H., and Ozturk, D. (2016). CTX-M-15-Type Extended-Spectrum Beta-Lactamase-Producing Escherichia coli as causative agent of bovine mastitis. Foodborne pathogens and disease 13, 477-482 https://doi.org/10.1089/fpd.2015.2114. DOI: https://doi.org/10.1089/fpd.2015.2114
Peirano, G., van der Bij, A. K., Freeman, J. L., Poirel, L., Nordmann, P., Costello, M., Tchesnokova, V. L., and Pitout, J. D. (2014). Characteristics of Escherichia coli sequence type 131 isolates that produce extended-spectrum β-lactamases: global distribution of the H 30-Rx sublineage. Antimicrobial agents and chemotherapy 58, 3762-3767 https://doi.org/10.1128/aac.02428-14. DOI: https://doi.org/10.1128/AAC.02428-14
Perez, F., Hujer, A. M., Hujer, K. M., Decker, B. K., Rather, P. N., and Bonomo, R. A. (2007). Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrobial agents and chemotherapy 51, 3471-3484 https://doi.org/10.1128/aac.01464-06. DOI: https://doi.org/10.1128/AAC.01464-06
Pitout, J. D., and Laupland, K. B. (2008). Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. The Lancet infectious diseases 8, 159-166 http://infection.thelancet.com/. DOI: https://doi.org/10.1016/S1473-3099(08)70041-0
Prakash, V., Lewis, J. S., Herrera, M. L., Wickes, B. L., and Jorgensen, J. H. (2009). Oral and parenteral therapeutic options for outpatient urinary infections caused by Enterobacteriaceae producing CTX-M extended-spectrum β-lactamases. Antimicrobial agents and chemotherapy 53, 1278-1280 https://doi.org/10.1128/aac.01519-08. DOI: https://doi.org/10.1128/AAC.01519-08
Pullukcu, H., Tasbakan, M., Sipahi, O. R., Yamazhan, T., Aydemir, S., and Ulusoy, S. (2007). Fosfomycin in the treatment of extended spectrum beta-lactamase-producing Escherichia coli-related lower urinary tract infections. International journal of antimicrobial agents 29, 62-65 https://doi.org/10.1016/j.ijantimicag.2006.08.039. DOI: https://doi.org/10.1016/j.ijantimicag.2006.08.039
Rahman, S. U., Ahmad, S., and Khan, I. (2018). Incidence of ESBL-producing-Escherichia coli in poultry farm environment and retail poultry meat. Pak Vet J 39, 116-20 DOI: 10.29261/pakvetj/2018.091. DOI: https://doi.org/10.29261/pakvetj/2018.091
Roberts, R. R., Hota, B., Ahmad, I., Scott, R. D., Foster, S. D., Abbasi, F., Schabowski, S., Kampe, L. M., Ciavarella, G. G., and Supino, M. (2009). Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: implications for antibiotic stewardship. Clinical infectious diseases 49, 1175-1184 https://doi.org/10.1086/605630. DOI: https://doi.org/10.1086/605630
Schalm, O., Carroll, E., and Jain, N. (1971). Milk formation, composition and alteration in mastitis. Bovine mastitis. Ed. Lea & Febiger. Philadelphia, 72-93 https://doi.org/10.3168/jds.S0022-0302(04)73325-1. DOI: https://doi.org/10.3168/jds.S0022-0302(04)73325-1
Tasbakan, M. I., Pullukcu, H., Sipahi, O. R., Yamazhan, T., and Ulusoy, S. (2012). Nitrofurantoin in the treatment of extended-spectrum β-lactamase-producing Escherichia coli-related lower urinary tract infection. International journal of antimicrobial agents 40, 554-556 https://doi.org/10.1016/j.ijantimicag.2012.08.003. DOI: https://doi.org/10.1016/j.ijantimicag.2012.08.003
Timofte, D., Maciuca, I. E., Evans, N. J., Williams, H., Wattret, A., Fick, J. C., and Williams, N. J. (2014). Detection and molecular characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 β-lactamases from bovine mastitis isolates in the United Kingdom. Antimicrobial agents and chemotherapy 58, 789-794 https://doi.org/10.1128/aac.00752-13. DOI: https://doi.org/10.1128/AAC.00752-13
Villegas, M. V., Correa, A., Perez, F., Zuluaga, T., Radice, M., Gutkind, G., Casellas, J. M., Ayala, J., Lolans, K., and Quinn, J. P. (2004). CTX-M-12 β-lactamase in a Klebsiella pneumoniae clinical isolate in Colombia. Antimicrobial agents and chemotherapy 48, 629-631 https://doi.org/10.1128/aac.48.2.629-631.2004. DOI: https://doi.org/10.1128/AAC.48.2.629-631.2004
Xiao, Y.-H., Giske, C. G., Wei, Z.-Q., Shen, P., Heddini, A., and Li, L.-J. (2011). Epidemiology and characteristics of antimicrobial resistance in China. Drug resistance updates 14, 236-250 https://doi.org/10.1016/j.drup.2011.07.001. DOI: https://doi.org/10.1016/j.drup.2011.07.001
Xu, G., An, W., Wang, H., and Zhang, X. (2015). Prevalence and characteristics of extended-spectrum β-lactamase genes in Escherichia coli isolated from piglets with post-weaning diarrhea in Heilongjiang province, China. Frontiers in microbiology 6, 1103 https://doi.org/10.3389/fmicb.2015.01103. DOI: https://doi.org/10.3389/fmicb.2015.01103
Yao, F., Qian, Y., Chen, S., Wang, P., and Huang, Y. (2007). Incidence of extended-spectrum β-lactamases and characterization of integrons in extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated in Shantou, China. Acta biochimica et biophysica Sinica 39, 527-532 https://doi.org/10.1111/j.1745-7270.2007.00304.x. DOI: https://doi.org/10.1111/j.1745-7270.2007.00304.x
Yu, T., He, T., Yao, H., Zhang, J.-B., Li, X.-N., Zhang, R.-M., and Wang, G.-Q. (2015). Prevalence of 16S rRNA methylase gene rmtB among Escherichia coli isolated from bovine mastitis in Ningxia, China. Foodborne pathogens and disease 12, 770-777 https://doi.org/10.1089/fpd.2015.1983. DOI: https://doi.org/10.1089/fpd.2015.1983
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2026 N ULLAH, S AHMAD, SU REHMAN, S RIAZ, MM ADIL, S MANSOOR

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



