BIOCHAR APPLICATION IN IMPROVING SOIL HEALTH AND SUSTAINABILITY
DOI:
https://doi.org/10.54112/bbasr.v2024i1.81Keywords:
Biochar, Agriculture, Soil Health, Agricultural Sustainability, Pyrolysis, Global WarmingAbstract
Soil is the most significant component in productive agriculture; hence, improving soil quality is essential for increasing crop yields and overall soil fertility. Biochar is suitable for application in soil to improve productivity and fertility for crops. It is a carbon-rich compound that is produced through burning in circumstances with little oxygen from agricultural crop biomass. The importance of biochar in carbon sequestration lies in its various uses such as waste recycling, soil nutrient retention, and reduction of the global warming effect. This assessment will explore the importance of biochar to improve soil fertility safely and sustainably. This article provides information on biochar properties, manufacturing processes, and uses in farming. This review will be a valuable resource for those concerned with biochar applications.
Downloads
References
Ábrego, J., Atienza-Martínez, M., Plou, F., & Arauzo, J. (2019). Heat requirement for fixed bed pyrolysis of beechwood chips. Energy, 178, 145-157.https://doi.org/10.1016/j.energy.2019.04.078
Agegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119, 156–170. https://doi.org/10.1016/j.apsoil.2017.06.008.
Ahmad Bhat, S., Kuriqi, A., Dar, M. U. D., Bhat, O., Sammen, S. S., Towfiqul Islam, A. R. M., Elbeltagi, A., Shah, O., Ai-Ansari, N., & Ali, R. (2022). Application of biochar for improving physical, chemical, and hydrological soil properties: a systematic review. Sustainability, 14(17),11104.https://doi.org/10.3390/su141711104.
Akhil, D., Lakshmi, D., Kartik, A., Vo, D.-V. N., Arun, J., & Gopinath, K. P. (2021). Production, characterization, activation and environmental applications of engineered biochar: a review. Environmental Chemistry Letters, 19, 2261–2297.https://doi.org/10.1007/s10311-020-01167-7.
Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379. https://doi.org/10.1016/j.biortech.2012.12.165.
Alkharabsheh, H. M., Seleiman, M. F., Battaglia, M. L., Shami, A., Jalal, R. S., Alhammad, B. A., Almutairi, K. F., & Al-Saif, A. M. (2021). Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy, 11(5), 993.https://doi.org/10.3390/agronomy11050993.
Anae, J., Ahmad, N., Kumar, V., Thakur, V. K., Gutierrez, T., Yang, X. J., Cai, C., Yang, Z., & Coulon, F. (2021). Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives. Science of the Total Environment,767,144351 DOI: 10.1016/j.scitotenv.2020.144351
Antonangelo, J. A., Zhang, H., Sun, X., & Kumar, A. (2019). Physicochemical properties and morphology of biochars as affected by feedstock sources and pyrolysis temperatures. Biochar, 1, 325–336. DOI: 10.1007/s42773-019-00028
Assis, M. R., Brancheriau, L., Napoli, A., & Trugilho, P. F. (2016). Factors affecting the mechanics of carbonized wood: literature review. Wood Science and Technology, 50, 519–536. DOI: 10.1007/s00226-016-0812-6
Baig, M. J., Swain, P., & Nayak, S. K. (2023). Carbon sequestration-a strategy for mitigating climate change. E-Planet, 48. DOI: 10.18782/2583-4770.128.
Bamido, A. O. (2018). Design of a fluidized bed reactor for biomass pyrolysis. University of Cincinnati.DOI: 10.13140/RG.2.2.18955.00800
Barus, J., Ernawati, R. E. R., Wardani, N., Pujiharti, Y., Suretno, N. D., & Slameto, S. (2023). Improvement in soil properties and soil water content due to the application of rice husk biochar and straw compost in tropical upland. International Journal of Recycling of Organic WasteinAgriculture,12(1) 10.30486/ijrowa.2022.1942099.1355.
Biney, M., & Gusiatin, M. Z. (2024). Biochar from Co-Pyrolyzed Municipal Sewage Sludge (MSS): Part 1: Evaluating Types of Co-Substrates and Co-Pyrolysis Conditions. Materials, 17(14), 3603. DOI: 10.3390/ma17143603.
Cao, Q., An, T., Xie, J., Liu, Y., Xing, L., Ling, X., & Chen, C. (2022). Insight to the physiochemical properties and DOM of biochar under different pyrolysis temperature and modification conditions. Journal of Analytical and Applied Pyrolysis,166,105,590.DOI: 10.1016/j.jaap.2022.105590.
Cayuela, M. L., Van Zwieten, L., Singh, B. P., Jeffery, S., Roig, A., & Sánchez-Monedero, M. A. (2014). Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture, Ecosystems & Environment.https://doi.org/10.1016/j.agee.2013.10.009.
Dai, Y., Wang, W., Lu, L., Yan, L., & Yu, D. (2020). Utilization of biochar for the removal of nitrogen and phosphorus. Journal of Cleaner Production, 257,120573https://doi.org/10.1016/j.jclepro.2020.120573.
Demirbas, A. (2009). Pyrolysis mechanisms of biomass materials. Energy Sources, Part A, 31(13), 1186–1193. DOI:
1007/978-3-319-49595-8_10
Downie, A. (2011). Biochar production and use: environmental risks and rewards. Univ South Waleshttps://doi.org/10.26190/unsworks/15191
Dwibedi, S. K., Pandey, V. C., Divyasree, D., & Bajpai, O. (2022). Biochar‐based land development. Land Degradation & Development, 33(8), 1139–1158 https://doi.org/10.1002/ldr.4185
Elbasiouny, H., Elbehiry, F., El-Ramady, H., & Hasanuzzaman, M. (2021). Contradictory results of soil greenhouse gas emissions as affected by biochar application: Special focus on alkaline soils. International Journal of Environmental Research, 15, 903–920. DOI: 10.1007/s41742-021-00358-6
Emenike, E. C., Iwuozor, K. O., Ighalo, J. O., Bamigbola, J. O., Omonayin, E. O., Ojo, H. T., Adeleke, J., & Adeniyi, A. G. (2024). Advancing the circular economy through the thermochemical conversion of waste to biochar: a review on sawdust waste-derived fuel. Biofuels, 15(4), 433–447. DOI: 10.1080/17597269.2023.2255007
Feng, Y., Wang, N., Fu, H., Xie, H., Xue, L., Feng, Y., Poinern, G. E. J., & Chen, D. (2023). Manure-derived hydrochar superior to manure: Reducing non-point pollution risk by altering nitrogen and phosphorus fugacity in the soil–water system. Waste Management, 168, 440–451.DOI: 10.1016/j.wasman.2023.06.021
Foong, S. Y., Liew, R. K., Yang, Y., Cheng, Y. W., Yek, P. N. Y., Mahari, W. A. W., Lee, X. Y., Han, C. S., Vo, D.-V. N., & Van Le, Q. (2020). Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chemical Engineering Journal, 389, 124401https://doi.org/10.1016/j.cej.2020.124401.
Gao, Y., Wu, P., Jeyakumar, P., Bolan, N., Wang, H., Gao, B., Wang, S., & Wang, B. (2022). Biochar as a potential strategy for remediation of contaminated mining soils: Mechanisms, applications, and future perspectives. Journal of Environmental Management, 313, 114973https://doi.org/10.1016/j.jenvman.2022.114973.
Garba, N. A., & Abdullahi, S. (2020). Current Status in the Conversion of Lignocellulosic Biomass to Liquid (BtL) Biofuels. International Journal of Science for Global Sustainability, 6(3), 133–143.
Gaunt, J., & Cowie, A. (2012). Biochar, greenhouse gas accounting and emissions trading. In Biochar for environmental management (pp. 349–372). Routledge.
Ghodake, G. S., Shinde, S. K., Kadam, A. A., Saratale, R. G., Saratale, G. D., Kumar, M., Palem, R. R., AL-Shwaiman, H. A., Elgorban, A. M., & Syed, A. (2021). Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. Journal of Cleaner Production, 297, 26645.DOI:10.1016/j.jclepro.2021.126645
Ghysels, S., Acosta, N., Estrada, A., Pala, M., De Vrieze, J., Ronsse, F., & Rabaey, K. (2020). Integrating anaerobic digestion and slow pyrolysis improves the product portfolio of a cocoa waste biorefinery. Sustainable Energy & Fuels, 4(7), 3712–3725.
Gray, M., Johnson, M. G., Dragila, M. I., & Kleber, M. (2014). Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, 61, 196–205https://doi.org/10.1016/j.biombioe.2013.12.010.
Gryta, A., Skic, K., Adamczuk, A., Skic, A., Marciniak, M., Józefaciuk, G., & Boguta, P. (2023). The Importance of the Targeted Design of Biochar Physicochemical Properties in Microbial Inoculation for Improved Agricultural Productivity—A Review. Agriculture, 14(1), 37https://doi.org/10.3390/agriculture14010037.
Gujre, N., Soni, A., Rangan, L., Tsang, D. C. W., & Mitra, S. (2021). Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review. Environmental Pollution,268,115549.DOI: 10.1016/j.envpol.2020.115549.
Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 4659.https://doi.org/10.1016/j.agee.2015.03.015.
Guo, X., Liu, H., & Zhang, J. (2020). The role of biochar in organic waste composting and soil improvement: A review. Waste Management, 102,8848899.https://doi.org/10.1016/j.wasman.2019.12.003
Gupta, M., Savla, N., Pandit, C., Pandit, S., Gupta, P. K., Pant, M., Khilari, S., Kumar, Y., Agarwal, D., & Nair, R. R. (2022). Use of biomass-derived biochar in wastewater treatment and power production: A promising solution for a sustainable environment. Science of the Total Environment,825,153892DOI: 10.1016/j.scitotenv.2022.153892
Hasnain, M., Munir, N., Abideen, Z., Zulfiqar, F., Koyro, H. W., El-Naggar, A., Caçador, I., Duarte, B., Rinklebe, J., & Yong, J. W. H. (2023). Biochar-plant interaction and detoxification strategies under abiotic stresses for achieving agricultural resilience: A critical review. Ecotoxicology and Environmental Safety,249,114408https://doi.org/10.1016/j.ecoenv.2022.114408.
He, Y., Zhou, X., Jiang, L., Li, M., Du, Z., Zhou, G., Shao, J., Wang, X., Xu, Z., & Hosseini Bai, S. (2017). Effects of biochar application on soil greenhouse gas fluxes: A meta‐analysis. Gcb Bioenergy, 9(4), 743-755. https://doi.org/10.1111/gcbb.12376
Hoang, A. T., Ong, H. C., Fattah, I. M. R., Chong, C. T., Cheng, C. K., Sakthivel, R., & Ok, Y. S. (2021). Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology106997DOI: 10.1016/j.fuproc.2021.106997
Huang, L., & Gu, M. (2019). Effects of biochar on container substrate properties and growth of plants—A review. Horticulturae, 5(1), 14 https://doi.org/10.3390/horticulturae5010014.
Huang, X., Ng, K. W., & Giroux, L. (2022). Grindability of biocarbon and coal blends in rolling mill. International Journal of Coal Preparation and Utilization, 42(6), 1651–1663DOI: 10.1080/19392699.2020.1749053
Jewiarz, M., Wróbel, M., Mudryk, K., & Szufa, S. (2020). Impact of the drying temperature and grinding technique on biomass grindability. Energies,13(13),3392https://doi.org/10.3390/en13133392.
Joseph, S., Cowie, A. L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M. L., Graber, E. R., Ippolito, J. A., & Kuzyakov, Y. (2021). How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. Gcb Bioenergy, 13(11), 1731–1764DOI: 10.1111/gcbb.12885
Kabir, M., Habiba, U. E., Khan, W., Shah, A., Rahim, S., Patricio, R., Ali, L., & Shafiq, M. (2023). Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. Journal of King Saud University-Science, 35(5), 102693https://doi.org/10.1016/j.jksus.2023.102693.
Kafeel, U., Jahan, U., Raghib, F., & Khan, F. A. (2022). Global importance and cycling of nanoparticles. In The role of nanoparticles in plant nutrition under soil pollution: nanoscience in nutrient use efficiency (pp. 1–20). Springer. https://doi.org/10.1007/978-3-030-97389-6.
Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews,45,359378.https://doi.org/10.1016/j.rser.2015.01.050
Kammann, C., Ippolito, J., Hagemann, N., Borchard, N., Cayuela, M. L., Estavillo, J. M., Fuertes-Mendizabal, T., Jeffery, S., Kern, J., & Novak, J. (2017). Biochar as a tool to reduce the agricultural greenhouse-gas burden–knowns, unknowns and future research needs. Journal of Environmental Engineering and Landscape Management,139https://doi.org/10.3846/16486897.2017.1319375.
Kan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–1140
Kannan, P., Krishnaveni, D., & Ponmani, S. (2020). Biochars and Its Implications on Soil Health and Crop Productivity in Semi-Arid Environment BT - Biochar Applications in Agriculture and Environment Management (J. S. Singh & C. Singh (eds.); pp. 99–122). Springer International Publishing.DOI: 10.1007/978-3-030-40997-5_5
Kätterer, T., Roobroeck, D., Andrén, O., Kimutai, G., Karltun, E., Kirchmann, H., Nyberg, G., Vanlauwe, B., & de Nowina, K. R. (2019). Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crops Research, 235, 18–26DOI: 10.1016/j.fcr.2019.02.015
Khan, S. A., Kumar, D., Kumar, S., Isha, A., D’Silva, T. C., Chandra, R., & Vijay, V. K. (2022). Recent advances in fast pyrolysis and oil upgradation. Thermochemical and Catalytic Conversion Technologies for Future Biorefineries: Volume 1, 297–344DOI:
1007/978-981-19-4312-6_10
Khan, S., Irshad, S., Mehmood, K., Hasnain, Z., Nawaz, M., Rais, A., Gul, S., Wahid, M. A., Hashem, A., & Abd_Allah, E. F. (2024). Biochar production and characteristics, its impacts on soil health, crop production, and yield enhancement: A review. Plants, 13(2), 166.https://doi.org/10.3390/plants13020166.
Kimaro, A. A., Timmer, V. R., Chamshama, S. A. O., Mugasha, A. G., & Kimaro, D. A. (2008). Differential response to tree fallows in rotational woodlot systems in semi-arid Tanzania: Post-fallow maize yield, nutrient uptake, and soil nutrients. Agriculture, Ecosystems & Environment, 125(1–4), 73–83https://doi.org/10.1016/j.agee.2007.11.007.
Kordoghli, S., Fassatoui, E., Largeau, J. F., & Khiari, B. (2023). Slow pyrolysis of orange peels blended with agro-food wastes: characterization of the biochars for environmental applications. Comptes Rendus. Chimie, 26(S1), 1–15. DOI: 10.5802/crchim.240.
Kumar, A., Bhattacharya, T., Hasnain, S. M. M., Nayak, A. K., & Hasnain, M. S. (2020). Applications of biomass-derived materials for energy production, conversion, and storage. Materials Science for Energy Technologies, 3, 905–920- DOI: 10.1016/j.mset.2020.10.012
Lebender, U., Senbayram, M., Lammel, J., & Kuhlmann, H. (2014). Effect of mineral nitrogen fertilizer forms on N2O emissions from arable soils in winter wheat production. Journal of Plant Nutrition and Soil Science, 177(5), 722–732.https://doi.org/10.1002/jpln.201300292.
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43(9), 1812–1836https://doi.org/10.1016/j.soilbio.2011.04.022.
Liu, M., Shi, Y., & Fang, F. (2014). Combined cooling, heating and power systems: A survey. Renewable and Sustainable Energy Reviews, 35,1122.https://doi.org/10.1016/j.rser.2014.03.054.
Liu, Z., Dugan, B., Masiello, C. A., & Gonnermann, H. M. (2017). Biochar particle size, shape, and porosity act together to influence soil water properties. Plos One, 12(6), e0179079. https://doi.org/10.1371/journal.pone.0179079.
Lorenz, K., & Lal, R. (2018). Carbon sequestration in agricultural ecosystems DOI: 10.1007/978-3-319-92318-5
Lyu, H., Zhang, H., Chu, M., Zhang, C., Tang, J., Chang, S. X., Mašek, O., & Ok, Y. S. (2022). Biochar affects greenhouse gas emissions in various environments: A critical review. Land Degradation & Development, 33(17), 3327–3342.https://doi.org/10.1002/ldr.4405.
Makinde, E. A., Ayeni, L. S., & Ojeniyi, S. O. (2011). Effects of organic, organomineral and NPK fertilizer treatments on the nutrient uptake of Amaranthus cruentus (L) on two soil types in Lagos, Nigeria. Journal of Central European Agriculture,12(1),114123.DOI: 10.5513/JCEA01/12.1.887.
Mandal, S., Sarkar, B., Bolan, N., Novak, J., Ok, Y. S., Van Zwieten, L., Singh, B. P., Kirkham, M. B., Choppala, G., & Spokas, K. (2016). Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Critical Reviews in Environmental Science and Technology, 46(17), 1367–1401http://dx.doi.org/10.1080/10643389.2016.1239975.
Mariappan, S., David Raj, A., Kumar, S., & Chatterjee, U. (2023). Global warming impacts on the environment in the last century. In Ecological footprints of climate change: Adaptive approaches and sustainability (pp. 63–93). Springer10.1007/978-3-031-15501-7_3
Nogués, I., Miritana, V. M., Passatore, L., Zacchini, M., Peruzzi, E., Carloni, S., Pietrini, F., Marabottini, R., Chiti, T., & Massaccesi, L. (2023). Biochar soil amendment as carbon farming practice in Mediterranean environment. Geoderma Regional, 33, e00634.DOI: 10.1016/j.geodrs.2023.e00634
Novak, J. M., Sigua, G. C., Ducey, T. F., Watts, D. W., & Stone, K. C. (2019). Designer biochars impact on corn grain yields, biomass production, and fertility properties of a highly-weathered ultisol. Environments, 6(6), 64https://doi.org/10.3390/environments6060064.
Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., Bolan, N., Wang, H., & Ok, Y. S. (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1, 3–22. DOI: 10.1007/s42773-019-00009-2
Panwar, N. L., Pawar, A., & Salvi, B. L. (2019). Comprehensive review on production and utilization of biochar. SN Applied Sciences, 1, 1–19DOI: 10.1007/s42452-019-0172-6
Parmar, A., Nema, P. K., & Agarwal, T. (2014). Biochar production from agro-food industry residues: a sustainable approach for soil and environmental management. Current Science, 107(10), 1673–1682.
Perra, M., Bacchetta, G., Muntoni, A., De Gioannis, G., Castangia, I., Rajha, H. N., Manca, M. L., & Manconi, M. (2022). An outlook on modern and sustainable approaches to the management of grape pomace by integrating green processes, biotechnologies and advanced biomedical approaches. Journal of Functional Foods, 98, 105276.https://doi.org/10.1016/j.jff.2022.105276.
Qian, S., Zhou, X., Fu, Y., Song, B., Yan, H., Chen, Z., Sun, Q., Ye, H., Qin, L., & Lai, C. (2023). Biochar-compost as a new option for soil improvement: Application in various problem soils. Science of The Total Environment, 870, 162024. DOI: 10.1016/j.scitotenv.2023.162024
.Qiao, J., Yu, H., Wang, X., Li, F., Wang, Q., Yuan, Y., & Liu, C. (2019). The applicability of biochar and zero-valent iron for the mitigation of arsenic and cadmium contamination in an alkaline paddy soil. Biochar, 1(2), 203–212 DOI: 10.1007/s42773-019-00015-4
Razzak, S. A. (2024). Municipal solid and plastic waste derived high-performance biochar production: A comprehensive review. Journal of Analytical and Applied Pyrolysis, 106622 DOI: 10.1016/j.jaap.2024.106622
Ronsse, F., Mašek, O., & Manyà, J. J. (2021). Biochar Production via Pyrolysis. In Biochar as a Renewable-Based Material: With Applications in Agriculture, the Environment and Energy (pp. 35–59). World ScientificDOI: 10.1142/q0262.
Sakhiya, A. K., Anand, A., Aier, I., Vijay, V. K., & Kaushal, P. (2021). Suitability of rice straw for biochar production through slow pyrolysis: Product characterization and thermodynamic analysis. Bioresource Technology Reports, 15, 100818.https://doi.org/10.1016/j.biteb.2021.100818.
Sakhiya, A. K., Anand, A., & Kaushal, P. (2020). Production, activation, and applications of biochar in recent times. Biochar, 2, 253–285DOI: 10.1007/s42773-020-00047-1
Saleh, M. E., El-Damarawy, Y. A., Assad, F. F., Abdesalam, A. A., & Yousef, R. A. (2020). Removal of copper metal ions by sugarcane bagasse and rice husk biochars from contaminated aqueous solutions. Med. J. Soil Sci, 1(1), 1–17.
Shagali, A. A., Hu, S., Wang, Y., Li, H., Wang, Y., Su, S., & Xiang, J. (2021). Comparative study on one-step pyrolysis activation of walnut shells to biochar at different heating rates. Energy Reports,388396https://doi.org/10.1016/j.egyr.2021.10.021
Sharma, A., & Chhabra, V. (2024). A Review on the Applications of Biochar in Agricultural Farms: A Low Carbon Emission Technology. Journal of Advances in Biology & Biotechnology, 27(7), 480–492DOI: 10.9734/jabb/2024/v27i71009.
Singh, H., Northup, B. K., Rice, C. W., & Prasad, P. V. V. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar, 4(1), 8DOI: 10.1007/s42773-022-00138-1
Sreekumar, A., Mohan, O., Kurian, V., Mvolo, C., & Kumar, A. (2023). A review of Canadian wood conversion technologies for the production of fuels and chemicals. The Canadian Journal of Chemical Engineering, 101(8), 4331–4359 https://doi.org/10.1002/cjce.24820
Sri Shalini, S., Palanivelu, K., Ramachandran, A., & Raghavan, V. (2021). Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—a review. Biomass Conversion and Biorefinery, 11(5), 2247–2267DOI: 10.1007/s13399-020-00604-5
Subedi, R., Taupe, N., Pelissetti, S., Petruzzelli, L., Bertora, C., Leahy, J. J., & Grignani, C. (2016). Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type. Journal of Environmental Management, 166, 73–83DOI: 10.1016/j.jenvman.2015.10.007
Tan, X., Liu, S., Liu, Y., Gu, Y., Zeng, G., Hu, X., Wang, X., Liu, S., & Jiang, L. (2017). Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresource Technology, 227, 359–372https://doi.org/10.1016/j.biortech.2016.12.083.
Tareq, R., Akter, N., & Azam, M. S. (2019). Biochars and biochar composites: Low-cost adsorbents for environmental remediation. In Biochar from biomass and waste (pp. 169–209). Elsevier.DOI: 10.1016/B978-0-12-811729-3.00010-8
Thakkar, J., Kumar, A., Ghatora, S., & Canter, C. (2016). Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues. Renewable Energy, 94, 558–567https://doi.org/10.1016/j.renene.2016.03.087.
Uchimiya, M. (2014). Changes in nutrient content and availability during the slow pyrolysis of animal wastes. Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment, 53–68 DOI: 10.1007/978-94-017-8807-6
Van Cuong, T., & Van Chuong, N. (2022). Quality and Yield Improvement of Edamame in Arsenic Contamination Soil and Irrigation Water with Application of Lime. Webology, 19(2) DOI: 10.1016/j.jhazmat.2017.06.041
Verde, S. F., & Chiaramonti, D. (2021). The biochar system in the EU: the pieces are falling into place, but key policy questions remain. European University Institute DOI: 10.2870/40598.
Wang, H., Shen, M., Hui, D., Chen, J., Sun, G., Wang, X., Lu, C., Sheng, J., Chen, L., & Luo, Y. (2019). Straw incorporation influences soil organic carbon sequestration, greenhouse gas emission, and crop yields in a Chinese rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system. Soil and Tillage Research, 195, 104377DOI: 10.1016/j.still.2019.104377
Wato, T., Amare, M., Bonga, E., Demand, B. B. O., & Coalition, B. B. R. (2020). The agricultural water pollution and its minimization strategies—A review. J. Resour. Dev. Manag, 64, 10–22.
Wu, Z., Zhang, X., Dong, Y., Li, B., & Xiong, Z. (2019). Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system: six-year field observation and meta-analysis. Agricultural and Forest Meteorology, 278, 10762510.1016/j.agrformet.2019.107625
Yu, H., Zhang, Z., Li, Z., & Chen, D. (2014). Characteristics of tar formation during cellulose, hemicellulose and lignin gasification. Fuel, 118, 250256https://doi.org/10.1016/j.fuel.2013.10.080.
Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X., & Gao, B. (2019). Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management, 232, 8–21https://doi.org/10.1016/j.jenvman.2018.10.117.
Yuan, P., Wang, J., Pan, Y., Shen, B., & Wu, C. (2019). Review of biochar for the management of contaminated soil: Preparation, application and prospect. Science of the Total Environment, 659,473490.https://doi.org/10.1016/j.scitotenv.2018.12.400Get rights and content
Zhang, L., Ren, J., & Bai, W. (2023). A review of poultry waste-to-wealth: Technological progress, modeling and simulation studies, and economic-environmental and social sustainability. Sustainability, 15(7), 5620https://doi.org/10.3390/su15075620.
Zhang, Q., Xiao, J., Xue, J., & Zhang, L. (2020). Quantifying the effects of biochar application on greenhouse gas emissions from agricultural soils: a global meta-analysis. Sustainability, 12(8), 3436https://doi.org/10.3390/su12083436.
Zhang, Y., Liang, Y., Li, S., Yuan, Y., Zhang, D., Wu, Y., Xie, H., Brindhadevi, K., Pugazhendhi, A., & Xia, C. (2023). A review of biomass pyrolysis gas: Forming mechanisms, influencing parameters, and product application upgrades. Fuel,347,128461https://doi.org/10.1016/j.gerr.2024.100085.
Zhang, Z., Zhu, Z., Shen, B., & Liu, L. (2019). Insights into biochar and hydrochar production and applications: a review. Energy, 171, 581–598.https://doi.org/10.1016/j.energy.2019.01.035.
Zhao, B., Xu, R., Ma, F., Li, Y., & Wang, L. (2016). Effects of biochars derived from chicken manure and rape straw on speciation and phytoavailability of Cd to maize in artificially contaminated loess soil. Journal of Environmental Management, 184, 569–574 DOI: 10.1016/j.jenvman.2016.10.020
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 MF IRFAN, F MIRARA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.