A RANDOMIZED CLINICAL STUDY OF POMEWHITE®: EFFECTS ON ACNE, SKIN MICROBIOTA, AND OXIDATIVE STRESS
DOI:
https://doi.org/10.64013/bbasr.v2025i1.101Keywords:
Acne vulgaris, microbiota, white pomegranate, prebiotic, antioxidant, tyrosinaseAbstract
This clinical study evaluates the therapeutic potential of POMEWHITE®, a novel pomegranate-derived food supplement, in improving skin health and alleviating acne-related symptoms. Conducted over eight weeks, the trial involved 100 participants with moderate to severe acne and 20 healthy controls. Participants were randomly assigned to placebo (rice powder) or POMEWHITE® supplementation at 150 mg/day or 300 mg/day. Primary outcomes included acne lesion count, bacterial colony composition, and inflammation severity, while secondary outcomes assessed skin brightness, fine lines, antioxidative enzyme activity, and participant satisfaction. Results showed that eight weeks of POMEWHITE® intake, particularly at 300 mg/day, significantly reduced P. acnes colonies and increased beneficial skin flora. There was a notable decrease in lipase activity, contributing to reduced sebum production. Visual analogue scores and dermatologist-graded acne severity scales demonstrated substantial improvements in treated groups compared to placebo. Additionally, POMEWHITE® significantly improved antioxidant defenses by lowering superoxide dismutase (SOD) and increasing glucose-6-phosphate dehydrogenase (G6PD) levels. Inflammatory markers IL-4 and IFN-γ also showed favorable modulation, reflecting reduced skin inflammation. Tyrosinase activity inhibition and improvements in fine lines and wrinkles further highlighted the supplement’s anti-aging and skin-brightening potential. These findings suggest that POMEWHITE® is a safe and effective nutraceutical intervention for acne management. Its ability to restore microbiome balance, reduce oxidative stress and inflammation, and enhance skin appearance positions it as a promising alternative or adjunct to conventional acne therapies.
Downloads
References
Ak, M. (2019). A comprehensive review of acne vulgaris. J. Clin. Pharm 1, 17-45. https://doi.org/10.21608/bjas.2025.342268.1547
Alsaadoon, N. S. J., Al-Refaie, A. M., and Habashy, A. Y. (2024). Acne Vulgaris in Adolescents: A Comprehensive Review. Benha Journal of Applied Sciences 9, 5-13. https://doi.org/10.21608/bjas.2025.342268.1547 DOI: https://doi.org/10.21608/bjas.2025.342268.1547
Ben-Simhon, Z., Judeinstein, S., Trainin, T., Harel-Beja, R., Bar-Ya'akov, I., Borochov-Neori, H., and Holland, D. (2015). A" White" anthocyanin-less pomegranate (Punica granatum L.) caused by an insertion in the coding region of the leucoanthocyanidin dioxygenase (LDOX; ANS) gene. PloS one 10, e0142777. https://doi.org/10.1371/journal.pone.0142777 DOI: https://doi.org/10.1371/journal.pone.0142777
Benson, K. F., Redman, K. A., Carter, S. G., Keller, D., Farmer, S., Endres, J. R., and Jensen, G. S. (2012). Probiotic metabolites from Bacillus coagulans GanedenBC30TM support maturation of antigen-presenting cells in vitro. World Journal of Gastroenterology: World Journal of Gastroenterology 18, 1875. https://doi.org/10.3748/wjg.v18.i16.1875 DOI: https://doi.org/10.3748/wjg.v18.i16.1875
Bharti, S., and Vadlamudi, H. C. (2021). A strategic review on the involvement of receptors, transcription factors and hormones in acne pathogenesis. Journal of Receptors and Signal Transduction 41, 105-116. https://doi.org/10.1080/10799893.2020.1805626 DOI: https://doi.org/10.1080/10799893.2020.1805626
Bowe, W. P., and Logan, A. C. (2010). Clinical implications of lipid peroxidation in acne vulgaris: old wine in new bottles. Lipids in Health and Disease 9, 1-11. https://doi.org/10.1186/1476-511X-9-141 DOI: https://doi.org/10.1186/1476-511X-9-141
Chan, Y., Kim, K., and Cheah, S. (2011). Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. Journal of Ethnopharmacology 137, 1183-1188. https://doi.org/10.1016/j.jep.2011.07.050 DOI: https://doi.org/10.1016/j.jep.2011.07.050
Cinque, B., Palumbo, P., La Torre, C., Melchiorre, E., Corridoni, D., Miconi, G., Di Marzio, L., Cifone, M. G., and Giuliani, M. (2010). Probiotics in aging skin. Textbook of aging skin. Springer, Berlin, 811-819. DOI: https://doi.org/10.1007/978-3-540-89656-2_78
Gollnick, H. (2003). Current concepts of the pathogenesis of acne: implications for drug treatment. Drugs 63, 1579-1596. https://doi.org/10.2165/00003495-200363150-00005 DOI: https://doi.org/10.2165/00003495-200363150-00005
Hachem, J.-P., Crumrine, D., Fluhr, J., Brown, B. E., Feingold, K. R., and Elias, P. M. (2003). pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. Journal of Investigative Dermatology 121, 345-353. https://doi.org/10.1046/j.1523-1747.2003.12365.x DOI: https://doi.org/10.1046/j.1523-1747.2003.12365.x
Jensen, G. S., Benson, K. F., Carter, S. G., and Endres, J. R. (2010). GanedenBC 30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro. BMC immunology 11, 1-14. https://doi.org/10.1186/1471-2172-11-15 DOI: https://doi.org/10.1186/1471-2172-11-15
Jung, G. W., Tse, J. E., Guiha, I., and Rao, J. (2013). Prospective, randomized, open-label trial comparing the safety, efficacy, and tolerability of an acne treatment regimen with and without a probiotic supplement and minocycline in subjects with mild to moderate acne. Journal of cutaneous medicine and surgery 17, 114-122. https://doi.org/10.2310/7750.2012.12026 DOI: https://doi.org/10.2310/7750.2012.12026
Kim, H. J., and Kim, Y. H. (2024). Exploring acne treatments: From pathophysiological mechanisms to emerging therapies. International journal of molecular sciences 25, 5302. https://doi.org/10.3390/ijms25105302 DOI: https://doi.org/10.3390/ijms25105302
Kober, M.-M., and Bowe, W. P. (2015). The effect of probiotics on immune regulation, acne, and photoaging. International Journal of Women's Dermatology 1, 85-89. https://doi.org/10.1016/j.ijwd.2015.02.001 DOI: https://doi.org/10.1016/j.ijwd.2015.02.001
Kotepong, P., Ketsa, S., and van Doorn, W. G. (2011). A white mutant of Malay apple fruit (Syzygium malaccense) lacks transcript expression and activity for the last enzyme of anthocyanin synthesis, and the normal expression of a MYB transcription factor. Functional Plant Biology 38, 75-86. https://doi.org/10.1071/FP10164 DOI: https://doi.org/10.1071/FP10164
Lee, Y. B., Byun, E. J., and Kim, H. S. (2019). Potential role of the microbiome in acne: a comprehensive review. Journal of clinical medicine 8, 987. https://doi.org/10.3390/jcm8070987 DOI: https://doi.org/10.3390/jcm8070987
Li, Z., Summanen, P. H., Komoriya, T., Henning, S. M., Lee, R.-P., Carlson, E., Heber, D., and Finegold, S. M. (2015). Pomegranate ellagitannins stimulate growth of gut bacteria in vitro: Implications for prebiotic and metabolic effects. Anaerobe 34, 164-168. https://doi.org/10.1016/j.anaerobe.2015.05.012 DOI: https://doi.org/10.1016/j.anaerobe.2015.05.012
Mauro, T. (2006). SC pH: measurement, origins, and functions. Skin Barrier. New York: Taylor & Francis Group, 223-30.
Mphahlele, R. R., Fawole, O. A., Stander, M. A., and Opara, U. L. (2014). Preharvest and postharvest factors influencing bioactive compounds in pomegranate (Punica granatum L.)—A review. Scientia Horticulturae 178, 114-123. https://doi.org/10.1016/j.scienta.2014.08.010 DOI: https://doi.org/10.1016/j.scienta.2014.08.010
Niedźwiedzka, A., Micallef, M. P., Biazzo, M., and Podrini, C. (2024). The Role of the Skin Microbiome in Acne: Challenges and Future Therapeutic Opportunities. International Journal of Molecular Sciences 25, 11422. https://doi.org/10.3390/ijms252111422 DOI: https://doi.org/10.3390/ijms252111422
Nole, K. L. B., Yim, E., and Keri, J. E. (2014). Probiotics and prebiotics in dermatology. Journal of the American Academy of Dermatology 71, 814-821. https://doi.org/10.1016/j.jaad.2014.04.050 DOI: https://doi.org/10.1016/j.jaad.2014.04.050
Pirzadeh, M., Caporaso, N., Rauf, A., Shariati, M. A., Yessimbekov, Z., Khan, M. U., Imran, M., and Mubarak, M. S. (2021). Pomegranate as a source of bioactive constituents: A review on their characterization, properties and applications. Critical reviews in food science and nutrition 61, 982-999. https://doi.org/10.1080/10408398.2020.1749825 DOI: https://doi.org/10.1080/10408398.2020.1749825
Sychrová, A., Koláriková, I., Žemlička, M., and Šmejkal, K. (2020). Natural compounds with dual antimicrobial and anti-inflammatory effects. Phytochemistry reviews 19, 1471-1502. https://dx.doi.org/10.1007/s11101-020-09694-5 DOI: https://doi.org/10.1007/s11101-020-09694-5
Wajid, N., Naseem, R., Anwar, S. S., Awan, S. J., Ali, M., Javed, S., and Ali, F. (2015). The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells. Cell and tissue banking 16, 389-397. https://doi.org/10.1007/s10561-014-9483-4 DOI: https://doi.org/10.1007/s10561-014-9483-4
Wang, Y., Kuo, S., Shu, M., Yu, J., Huang, S., Dai, A., Two, A., Gallo, R. L., and Huang, C.-M. (2014). Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Applied microbiology and biotechnology 98, 411-424. https://doi.org/10.1007/s00253-013-5394-8 DOI: https://doi.org/10.1007/s00253-013-5394-8
Wood, J. M., Schallreuterwood, K. U., Lindsey, N. J., Callaghan, S., and Gardner, M. L. (1995). A specific tetrahydrobiopterin binding domain on tyrosinase controls melanogenesis. Biochemical and biophysical research communications 206, 480-485. https://doi.org/10.1006/bbrc.1995.1068 DOI: https://doi.org/10.1006/bbrc.1995.1068
Yadav, H., Jain, S., and Sinha, P. (2007). Production of free fatty acids and conjugated linoleic acid in probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei during fermentation and storage. International Dairy Journal 17, 1006-1010. https://doi.org/10.1016/j.idairyj.2006.12.003 DOI: https://doi.org/10.1016/j.idairyj.2006.12.003
Zhao, X., Yuan, Z., Feng, L., and Fang, Y. (2015). Cloning and expression of anthocyanin biosynthetic genes in red and white pomegranate. Journal of plant research 128, 687-696. https://doi.org/10.1007/s10265-015-0717-8 DOI: https://doi.org/10.1007/s10265-015-0717-8
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 H MOMAND, SJ AWAN, A SJJAD, AA SIDDIQUI, B ADEEL

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.