THE IMPACT OF SEED SIZE ON INITIAL DROUGHT STRESS RESILIENCE AND YIELD IN WHEAT CULTIVATION
DOI:
https://doi.org/10.54112/bbasr.v2024i1.79Keywords:
Drought stress, Bold seed, Growth, Yield, WheatAbstract
Wheat yield is affected severely by drought in this era of changing climate patterns, including high temperatures and altered precipitation patterns. Drought is among the most challenging environmental stressors, limiting wheat cultivars' growth, productivity, and performance. The current study was conducted during the rabi season 2022 at the Research Area, Department of Agronomy, University of the Punjab, Lahore, Pakistan. Therefore, the present study evaluated the potential of diverse seed sizes to advance wheat crop growth, development, and yield when subjected to different drought levels. The study comprised two experiments. The first was a lab experiment that included different drought levels (DL), DL0: 0.0 bar, DL1: -2 bar, DL2: -4 bar, and DL3: -6 bar (drought levels were induced by solutions of PEG-6000 at different concentrations) and three wheat seed size classes, i.e., bold grain (>38 g), medium grain (<33 g), and small grain (<25 g). In the field experiment, drought stress levels were DL0 (regular irrigation), DL1 (first irrigation at 30 days), DL2 (first irrigation at 45 days), and DL3 (first irrigation at 60 days). Seed sizes included W1 (bold >38 g), W2 (medium <33 g), and W3 (small <25 g). Drought severity increased with DL1 to DL3. The outcomes of the field experiment revealed that varying levels of drought stress and seed size classes significantly affected parameters such as emergence time, growth traits, biomass allocation, tiller count, plant height, and grain and biomass outcomes. Bold seeds contributed to higher biomass and grain yield, while severe drought decreased yields. Notably, the Harvest Index was affected, indicating bold seeds allocate more biomass to grains. In conclusion, proper seed size selection, favouring bold seeds, can enhance resilience to drought, benefiting wheat cultivation in water-scarce regions.
Downloads
References
Ali, G., Sajjad, M., Kanwal, S., Xiao, T., Khalid, S., Shoaib, F., & Gul, H. N. (2021). Spatial–temporal characterisation of rainfall in Pakistan during the past half-century (1961–2020). Scientific reports, 11(1), 6935. doi: 10.1038/s41598-021-86412-x. DOI: https://doi.org/10.1038/s41598-021-86412-x
Ali, Raza., Muhammad, Salman, Mubarik., Rahat, Sharif., Madiha, Habib., Warda, Jabeen., Cheng, Zhang., Hua, Chen., Zhong-hua, Chen., Kadambot, H., M., Siddique., Weijian, Zhuang., Rajeev, K., Varshney. (2022). Developing drought‐smart, ready‐to‐grow future crops. The Plant Genome. doi: 10.1002/tpg2.20279 DOI: https://doi.org/10.1002/tpg2.20279
Andrew, I.K.S., Storkey, J., Sparkes, D.L. (2015). Our view of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed. Res.55:239–248. doi:10.4081/ija.2017.901 DOI: https://doi.org/10.1111/wre.12137
Ankita, Khatiwada., Ichchha, Neupane., Bikash, Sharma., Niku, Bhetwal., Benif, Pandey. (2020). Effects of Drought Stress on Yield and Yield Attributing Characters of Wheat: A Review. doi: 10.38112/AGW.2020.V08I02.009 DOI: https://doi.org/10.38112/agw.2020.v08i02.009
Araus J.L., Slafer G.A., Reynolds M.P., Royo C. 2002. Plant breeding and drought in C3cereals: what should we breed for? Ann. Bot. 89, 925–940. doi: 10.1093/aob/mcf049 DOI: https://doi.org/10.1093/aob/mcf049
Asch F., Dingkuhnb M., Sow A., Audebert A. 2005. Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice, Field Crop. Res. 93:223–236. doi:https://doi.org/10.1016/j.fcr.2004.10.002 DOI: https://doi.org/10.1016/j.fcr.2004.10.002
Austin, R., Bingham, J., Blackwell, R., Evans, L., Ford, M., Morgan, C. and Taylor, M. 1980. Genetic improvements in winter wheat yields since 1900 and associated physiological changes. The J. of Agri. Sci. 94: 675-689 doi: https://doi.org/10.1017/S0021859600028665 DOI: https://doi.org/10.1017/S0021859600028665
Bai, G., Das, M.K., Carver, B.F., Xu, X., Krenzer, E.G. 2004. Covariation for micro satellite marker alleles associated with Rht8 and coleoptiles length in winter wheat.Crop.Sci.44:1187–1194. doi: 10.5586/asbp.2011.018 DOI: https://doi.org/10.2135/cropsci2004.1187
Cossani, C. M. and Reynolds, M. P. 2012. Physiological traits for improving heat tolerance in wheat. Plant Physiol. 160:1710–1718. doi: https://doi.org/10.1104/pp.112.207753 DOI: https://doi.org/10.1104/pp.112.207753
Delong, Yang., Guo-Hong, Zhang., Xing-Mao, Li., Hua, Xing., Hong-Bo, Cheng., Sheng-Li, Ni., Xiao-Ping, Chen. (2012). [Genetic characteristics associated with drought tolerance of plant height and thousand-grain mass of recombinant inbred lines of wheat]. Journal of Applied Ecology. doi: 10.1111/pbi.13637 DOI: https://doi.org/10.1111/pbi.13637
Gan, Y. and E.H. Stobbe. 1995. Effect of variations in seed size and planting depth on emergence, infertile plants’ and grain yield of spring wheat. Can. J. Plant Sci., 75: 565-570. doi: https://doi. org/10.4141/cjps95-098 DOI: https://doi.org/10.4141/cjps95-098
Golla, B. (2021). Agricultural production system in arid and semi-arid regions. J. Agric. Sci. Food Technol, 7(2), 234-244. doi:10.17352/2455-815x.000113 DOI: https://doi.org/10.17352/2455-815X.000113
Homer, C.D. and P.F. Pratt. 1961. Methods of analysis for soils, plants and waters. University of California. Agric. Sci. Publications, Berkeley. doi: https://doi.org/10.1097/00010694-196201000-00015 DOI: https://doi.org/10.1097/00010694-196201000-00015
Huang Y., G.P. Zhang, F.B. Wu, J. Chen and Y. Xiao. (2006). Interaction of salinity and cadmium stresses on antioxidantenzymes, sodium, and cadmium accumulation in fourbarley genotypes. J. Plant Nutr., 29: 2215- 2225. doi: 10.1631/jzus.2007.b0476 DOI: https://doi.org/10.1080/01904160600974155
Hussain, M., Farooq, M., Sattar, A., Ijaz, M., Sher, A., & Ul-Allah, S. (2018). Mitigating the adverse effects of drought stress through seed priming and seed quality on wheat (Triticum aestivum L.) productivity. Pakistan Journal of Agricultural Sciences, 55(2). doi: 10.21162/PAKJAS/18.5833 DOI: https://doi.org/10.21162/PAKJAS/18.5833
Hussain, M., Butt, A.R., Uzma, F. et al. A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess 192, 48 (2020). doi: https://doi.org/10.1007/s10661-019-7956-4 DOI: https://doi.org/10.1007/s10661-019-7956-4
Khadka, K., Earl, H. J., Raizada, M. N., & Navabi, A. (2020). A physio-morphological trait-based approach for breeding drought tolerant wheat. Frontiers in plant science, 11, 715. doi: https://doi.org/10.3389/fpls.2020.00715 DOI: https://doi.org/10.3389/fpls.2020.00715
Kaufmann, M.R, and A.N Eckard. 1971. Evaluation of Water Stress Control with Polyethylene Glycols by Analysis of Guttation. Plant physiology 47(4): 453–456. doi: 10.1104/pp.47.4.453 DOI: https://doi.org/10.1104/pp.47.4.453
Kirkegaard, J.A., Howe, G.N., Pitson, G. 2001. Agronomic interactions between drought and crop sequence. Proceedings of the 10th Australian Agronomy Conference Hobart. doi: https://doi.org/10.1071/CP14262 DOI: https://doi.org/10.1071/CP14262
Liu, Y., Bowman, B. C., Hu, Y. G., Liang, X., Zhao, W., Wheeler, J., ... & Chen, J. (2017). Evaluation of agronomic traits and drought tolerance of winter wheat accessions from the USDA-ARS national small grains collection. Agronomy, 7(3), 51. doi: https://doi.org/10.3390/agronomy7030051 DOI: https://doi.org/10.3390/agronomy7030051
Mason H. E., Spanner D. 2006. Competitive ability of wheat in conventional and organic management systems: a review of the literature. Can. J. Plant Sci. 86:333-343. doi:10.4141/P05-051 DOI: https://doi.org/10.4141/P05-051
Morgan, J.M., 1995. Growth and yield of wheat at high soil water deficit in seasons of varying evaporative demand. Field Crops Res. 40:143–152. doi: 10.12691/wjar-2-3-4 DOI: https://doi.org/10.1016/0378-4290(94)00100-Q
Munns, R. (2005). Genes and salt tolerance: bringing them together. New phytologist, 167(3), 645-663 doi:: https://doi.org/10.1111/j.1469-8137.2005.01487.x DOI: https://doi.org/10.1111/j.1469-8137.2005.01487.x
Mustafa, A., R. Ahmad, M. Farooq and A. Wahid. 2018. Effect of seed size and seed priming on stand establishment, wheat productivity and profitability under different tillage systems. Int. J. Agric. Biol., 20: 1710‒1716. doi: https://doi.org/10.17957/IJAB/15.0656
Rebetzke, G.J., López-Castaneda, C., Acuna, T.L., Condon, A.G., Richards, R.A. 2008. Inheritance of coleoptiles tiller appearance and size in wheat.Aust.J.Agric.Res.59: 863–873. doi: https://doi.org/10.1071/AR07397 DOI: https://doi.org/10.1071/AR07397
Rebetzke, G.J., Richards, R.A. 2000 .Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat.Aust.J.Agric.Res51:235–245. doi:10.1071/ar99043 DOI: https://doi.org/10.1071/AR99043
Richards, R.A., Lukacs, Z. 2002.Seedling vigour in wheat-sources of variation for genetic and agronomic improvement. Aust. J. Agric.Res.53: 41–50. doi: https://doi.org/10.1071/AR00147 DOI: https://doi.org/10.1071/AR00147
Shahwani, A.R., S.U. Baloch, S.K. Baloch, B. Mengal, W. Bashir, H.N. Baloch, R.A. Baloch, A.H. Sial, S.A. Sabiel, K. Razzaq and A.A. Shahwani. 2014. Influence of seed size on germinability and grain yield of wheat (Triticum aestivum L.) varieties. J. Nat. Sci. Res., 4: 147- 155. doi: https://dx.doi.org/10.17582/journal.pjar/2022/35.1.122.130
Shoaib, M., Nawaz, M., Ilyas, M., Shafique, M., Khan, I., Aslam, M. T., ... & Hassan, M. U. (2022). Effect of different seed sizes and seed rates on the growth and productivity of wheat grown under semi-arid conditions. Pak. J. Agric. Res, 35, 122-130 doi: http://dx.doi.org/10.17582/journal.pjar/2022/35.1.122.130 DOI: https://doi.org/10.17582/journal.pjar/2022/35.1.122.130
Trethowan, R.M., Singh, R.P., Huerta-Espino, J., Crossa, J., vanGinkel,M., 2001. Coleoptile length variation of near-isogenicRht lines of modern CIMMYT bread and durum wheat. Field Crops Res.70:167–176. doi: https://doi.org/10.1016/S0378-4290(00)00153-2 DOI: https://doi.org/10.1016/S0378-4290(00)00153-2
Veneklas E.J., Peacock J.M. 1994. Growth, biomass allocation and water use efficiency of two wheat cultivars in a mediterranean environment; a pot experiment under field conditions. Plant and Soil. 162: 241–247 doi: https://dx.doi.org/10.1007/BF01347711 DOI: https://doi.org/10.1007/BF01347711
Yordanov I, Velikova V, Tsonev T. 2003. Plant responses to drought and stress tolerance. Bulg. J. Plant physiol., Special Issue., 187-206. Zhang BC, Li FM, Huang GB. 2006. Yield performance of spring wheat improved by regulated deficit irrigation in an arid area. Agric. Water Manage., 79: 28-42 doi:10.1023/a:1007201411474. DOI: https://doi.org/10.1016/j.agwat.2005.02.007
Zhu, J. K. (2001). Plant salt tolerance. Trends in plant science, 6(2), 66-71. doi: 10.1016/s1360-1385(00)01838-0 DOI: https://doi.org/10.1016/S1360-1385(00)01838-0
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 MB CHATTHA, MZ MAQSOOD, II JAVID, S ALI, MA ABBAS, M ANAS
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.