STUDY OF THE GENETIC DIVERSITY OF CROPS IN THE ERA OF MODERN PLANT BREEDING

Authors

  • MN KHALID Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
  • I AMJAD Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan

DOI:

https://doi.org/10.54112/bbasr.v2018i1.14

Keywords:

plant breeding, genetic diversity, Molecular marker technology, heterozygosity, sustainable agriculture

Abstract

Modern plant breeding has transformed food production and will be essential to guaranteeing food security on a global scale. Striking a balance between increasing crop output in response to climate change and reducing crop failure in difficult conditions is crucial for sustainable agriculture. A fuller understanding of how plant breeding affects agricultural genetic diversity is necessary to make this trade-off. Molecular marker technology has been applied to research agricultural genetic diversity throughout the past three decades. Our results disproved our hypothesis that current plant breeding diminishes agricultural genetic diversity by revealing temporal patterns of genetic diversity. This review analyzed theoretical and empirical estimates of agricultural genetic variety, focusing on how genetic diversity varies in response to artificial selection through time, in an effort to understand these oscillations. Numerous studies on agricultural genetic diversity lacked sufficient experimental design, including technical biases related to cultivar and genome sampling, and were not intended to look at how certain plant breeding efforts affected diversity. Theoretical research on how plant breeding affects agricultural genetic diversity has received little attention. Computer simulations of five standard breeding strategies show that plant breeding has a considerable impact on the preservation of heterozygosity over generations. It is crucial that additional plant breeding research investigates the geographical and temporal diversity of agricultural genetics in order to achieve sustainable crop output.

Downloads

Download data is not yet available.

References

Breseghello, F., & Coelho, A. S. G. (2013). Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). Journal of agricultural and food chemistry 61, 8277-8286. DOI: https://doi.org/10.1021/jf305531j

Brown, J., & Caligari, P. (2011). An introduction to plant breeding. John Wiley & Sons.

Brummer, E. C., Barber, W. T., Collier, S. M., Cox, T. S., Johnson, R., Murray, S. C., Olsen, R. T., Pratt, R. C., & Thro, A. M. (2011). Plant breeding for harmony between agriculture and the environment. Frontiers in Ecology and the Environment9, 561-568. DOI: https://doi.org/10.1890/100225

Ceccarelli, S. (2015). Efficiency of plant breeding. Crop Science55, 87-97. DOI: https://doi.org/10.2135/cropsci2014.02.0158

Cooper, M., Messina, C. D., Podlich, D., Totir, L. R., Baumgarten, A., Hausmann, N. J., Wright, D., & Graham, G. (2014). Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop and Pasture Science65, 311-336. DOI: https://doi.org/10.1071/CP14007

Crossa, J., Campos, G. d. l., Pérez, P., Gianola, D., Burgueno, J., Araus, J. L., Makumbi, D., Singh, R. P., Dreisigacker, S., & Yan, J. (2010). Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics186, 713-724. DOI: https://doi.org/10.1534/genetics.110.118521

Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., De Los Campos, G., Burgueño, J., González-Camacho, J. M., Pérez-Elizalde, S., & Beyene, Y. (2017). Genomic selection in plant breeding: methods, models, and perspectives. Trends in plant science22, 961-975. DOI: https://doi.org/10.1016/j.tplants.2017.08.011

Forster, B. P., & Thomas, W. T. (2010). Doubled haploids in genetics and plant breeding. Plant breeding reviews25, 57-88. DOI: https://doi.org/10.1002/9780470650301.ch3

Gerald, N., Frei, U. K., & Lübberstedt, T. (2013). Accelerating plant breeding. Trends in plant science18, 667-672. DOI: https://doi.org/10.1016/j.tplants.2013.09.001

Heslot, N., Yang, H. P., Sorrells, M. E., & Jannink, J. L. (2012). Genomic selection in plant breeding: a comparison of models. Crop Science52, 146-160. DOI: https://doi.org/10.2135/cropsci2011.06.0297

Hickey, J. M., Chiurugwi, T., Mackay, I., & Powell, W. (2017). Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature genetics49, 1297-1303. DOI: https://doi.org/10.1038/ng.3920

Holland, J. B. (2010). Epistasis and plant breeding. Plant Breeding Reviews: John Wiley & Sons, Inc, 27-92. DOI: https://doi.org/10.1002/9780470650196.ch2

Jannink, J.-L., Lorenz, A. J., & Iwata, H. (2010). Genomic selection in plant breeding: from theory to practice. Briefings in functional genomics9, 166-177. DOI: https://doi.org/10.1093/bfgp/elq001

Litrico, I., & Violle, C. (2015). Diversity in plant breeding: a new conceptual framework. Trends in plant science20, 604-613. DOI: https://doi.org/10.1016/j.tplants.2015.07.007

Lusser, M., Parisi, C., Plan, D., & Rodríguez-Cerezo, E. (2012). Deployment of new biotechnologies in plant breeding. Nature biotechnology30, 231-239. DOI: https://doi.org/10.1038/nbt.2142

Mammadov, J., Aggarwal, R., Buyyarapu, R., & Kumpatla, S. (2012). SNP markers and their impact on plant breeding. International journal of plant genomics2012. DOI: https://doi.org/10.1155/2012/728398

Poehlman, J. M. (2013). Breeding field crops. Springer Science & Business Media.

Poland, J. A., & Rife, T. W. (2012). Genotyping‐by‐sequencing for plant breeding and genetics. The plant genome5. DOI: https://doi.org/10.3835/plantgenome2012.05.0005

Rauf, S., da Silva, J. T., Khan, A. A., & Naveed, A. (2010). Consequences of plant breeding on genetic diversity. International Journal of plant breeding4, 1-21.

Resende, M. D. V. d. (2016). Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop breeding and applied biotechnology16, 330-339. DOI: https://doi.org/10.1590/1984-70332016v16n4a49

Savidan, Y. (2010). Apornixis: Genetics and Breeding. Plant Breeding Reviews, Volume 1818, 13. DOI: https://doi.org/10.1002/9780470650158.ch2

Schaart, J. G., van de Wiel, C. C., Lotz, L. A., & Smulders, M. J. (2016). Opportunities for products of new plant breeding techniques. Trends in plant science21, 438-449. DOI: https://doi.org/10.1016/j.tplants.2015.11.006

Smith, S., Bubeck, D., Nelson, B., Stanek, J., & Gerke, J. (2015). Genetic diversity and modern plant breeding. In Genetic diversity and erosion in plants (pp. 55-88). Springer. DOI: https://doi.org/10.1007/978-3-319-25637-5_3

Tanksley, S. D., & Orton, T. J. (2012). Isozymes in plant genetics and breeding. Elsevier.

Turan, S., Cornish, K., & Kumar, S. (2012). Salinity tolerance in plants: breeding and genetic engineering. Australian Journal of Crop Science6, 1337-1348.

Xu, Y., Lu, Y., Xie, C., Gao, S., Wan, J., & Prasanna, B. M. (2012). Whole-genome strategies for marker-assisted plant breeding. Molecular Breeding29, 833-854. DOI: https://doi.org/10.1007/s11032-012-9699-6

Downloads

Published

2018-12-06

How to Cite

KHALID, M., & AMJAD, I. (2018). STUDY OF THE GENETIC DIVERSITY OF CROPS IN THE ERA OF MODERN PLANT BREEDING. Bulletin of Biological and Allied Sciences Research, 2018(1), 14. https://doi.org/10.54112/bbasr.v2018i1.14