IDENTIFICATION OF EXON 12 MUTATIONS IN THE CFTR GENE USING A COST-EFFECTIVE CAPILLARY ELECTROPHORESIS (CE) ASSAY

Authors

  • A SAFDAR Precision Genomics Research Lab, Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
  • H RAFIQUE Precision Genomics Research Lab, Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
  • I BANO University of Child Health Sciences, The Children's Hospital Lahore, Pakistan
  • MU GHANI Precision Genomics Research Lab, Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
  • N SADAQAT University of Child Health Sciences, The Children's Hospital Lahore, Pakistan
  • MF SABAR School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
  • MU KHAN Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan
  • M SHAHID Molecular Virology Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
  • R AROOJ Precision Genomics Research Lab, Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
  • A AKRAM Precision Genomics Research Lab, Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
  • F KANWAL Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore Pakistan
  • T MEHMOOD Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan

DOI:

https://doi.org/10.64013/bbasr.v2025i1.103

Keywords:

CFTR gene, Exon 12 mutations, Cystic Fibrosis, Sanger sequencing, Capillary Electrophoresis

Abstract

Cystic Fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the CFTR gene. The F508del mutation in exon 11 of the CFTR gene is prevalent worldwide, affecting approximately 70% of CF patients, but it is less common in the local Pakistani population. Exon 12 mutations, such as S549N and S549R, have been observed in CF patients with Pakistani ancestry. This research provides accessible and affordable mutation detection using reproducible and cost-effective capillary-electrophoresis (CE) methods. Therefore, this study investigated whether local Pakistani CF patients lacking exon 11 mutations, such as F508del, harbor any common or rare CF-causing mutations in exon 12 of the CFTR gene using a cost-effective Sanger sequencing assay. To achieve this, a new set of primers was meticulously designed and optimized for the amplification of exon 12 through PCR. Additionally, Sanger sequencing-based CE assay was fine-tuned for the sequencing of exon 12 amplicons. The Sanger sequencing results revealed no mutations in exon 12 among the 17 local CF patients who participated in the study. This absence of mutations in both exons 11 and 12 suggests that CF-causing mutations may be located in these patients' other regions of the CFTR gene. Furthermore, it indicates that exon 12 mutations are less prevalent among local Pakistani CF patients. The optimized   Sanger sequencing-based CE assay is at least five times more cost-effective and can be employed for the identification of mutations in any sequence with a length of up to 500 bases.

Downloads

Download data is not yet available.

References

Aalbers, B. L., Yaakov, Y., Derichs, N., Simmonds, N. J., De Wachter, E., Melotti, P., De Boeck, K., Leal, T., Tümmler, B., Wilschanski, M., and Bronsveld, I. (2020). Nasal potential difference in suspected cystic fibrosis patients with 5T polymorphism. Journal of Cystic Fibrosis 19, 627-631. DOI: 10.1016/j.jcf.2019.07.001 DOI: https://doi.org/10.1016/j.jcf.2019.07.001

Akram, A., Sakhawat, A., Ghani, M. U., Khan, M. U., Rehman, R., Ali, Q., Jin-Liang, P., and Ali, D. (2024). Silibinins and curcumin as promising ligands against mutant cystic fibrosis transmembrane regulator protein. AMB Express 14, 84. DOI: 10.1186/s13568-024-01742-z DOI: https://doi.org/10.1186/s13568-024-01742-z

Akram, M., Sabar, M. F., Bano, I., Ghani, M. U., and Shahid, M. (2022). Single Nucleotide Polymorphisms Of Transforming Growth Factor-Beta1 Gene As Potential Asthma Susceptible Variants In Punjabi Population Of Pakistan. J Ayub Med Coll Abbottabad 34(Suppl 1), S944-S948. DOI: 10.55519/JAMC-04-S4-10495 DOI: https://doi.org/10.55519/JAMC-04-S4-10495

Alattar, Z., Thornley, C., Behbahaninia, M., and Sisley, A. (2019). Proximal small bowel obstruction in a patient with cystic fibrosis: a case report. Surgical Case Reports 5, 143. DOI: 10.1186/s40792-019-0701-y DOI: https://doi.org/10.1186/s40792-019-0701-y

AlMaghamsi, T., Iqbal, N., Al-Esaei, N. A., Mohammed, M., Eddin, K. Z., Ghurab, F., Moghrabi, N., Heaphy, E., and Junaid, I. (2020). Cystic fibrosis gene mutations and polymorphisms in Saudi men with infertility. Annals of Saudi Medicine 40, 321-329. DOI: 10.5144/0256-4947.2020.321 DOI: https://doi.org/10.5144/0256-4947.2020.321

Aqeel, H., Ghani, M. U., Naeem, Z., Awan, F. I., Khan, M. U., Tanveer, S., Chaudary, N., and Shaikh, R. S. (2025). Potential modifier genes for cystic fibrosis disease. Human Gene, 201377. DOI: 10.1016/j.humgen.2025.201377 DOI: https://doi.org/10.1016/j.humgen.2025.201377

Ashfaq, M., Ahmed, S. A., Aziz-Rizvi, R., Hasan, Z., Kirmani, S., Munim, S., Naeem, R., Raza, J., and Furqan, A. (2023). Identifying the current status and future needs of clinical, educational, and laboratory genetics services in Pakistan: a web-based panel discussion. Journal of Community Genetics 14, 71-80. DOI: 10.1007/s12687-022-00615-x DOI: https://doi.org/10.1007/s12687-022-00615-x

Ashraf, A., Ghani, M. U., Khan, M. U., Rehman, H. M., ul Hassan, M., and Mehdi, Z. (2022). Personalized Medicine; a Potential Therapy for Cystic Fibrosis. Advancements in Life Sciences 9, 437-445.

Aziz, D. A., Billoo, A. G., Qureshi, A., Khalid, M., and Kirmani, S. (2017). Clinical and laboratory profile of children with Cystic Fibrosis: Experience of a tertiary care center in Pakistan. Pak J Med Sci 33, 554-559. DOI: 10.12669/pjms.333.12188 DOI: https://doi.org/10.12669/pjms.333.12188

Bhinder, M. A., Sadia, H., Mahmood, N., Qasim, M., Hussain, Z., Rashid, M. M., Zahoor, M. Y., Bhatti, R., Shehzad, W., Waryah, A. M., and Jahan, S. (2019). Consanguinity: A blessing or menace at population level? Annals of Human Genetics 83, 214-219. DOI: 10.1111/ahg.12308 DOI: https://doi.org/10.1111/ahg.12308

Bhutta, Z. A., Moattar, T., and Shah, U. (2000). Genetic analysis of cystic fibrosis in Pakistan: a preliminary report. Journal of Pakistan Medical Association 50, 217.

Bieniek, J. M., Lapin, C. D., and Jarvi, K. A. (2021). Genetics of CFTR and male infertility. Transl Androl Urol 10, 1391-1400. DOI: 10.21037/tau.2020.04.05 DOI: https://doi.org/10.21037/tau.2020.04.05

Carroll, W., Green, J., and Gilchrist, F. J. (2021). Interventions for preventing distal intestinal obstruction syndrome (DIOS) in cystic fibrosis. Cochrane Database of Systematic Reviews. DOI: 10.1002/14651858.CD012619.pub2 DOI: https://doi.org/10.1002/14651858.CD012619.pub3

Castellani, C., Massie, J., Sontag, M., and Southern, K. W. (2016). Newborn screening for cystic fibrosis. The Lancet Respiratory Medicine 4, 653-661. DOI: 10.1016/S2213-2600(16)00053-9 DOI: https://doi.org/10.1016/S2213-2600(16)00053-9

Curtis, A., and Richardson, J. (1993). homozygous S549N mutation in an inbred Pakistani family. Med Genet 30, 164-166. DOI: 10.1136/jmg.30.2.164 DOI: https://doi.org/10.1136/jmg.30.2.164

Duz, M. B., and Ozyavuz Cubuk, P. (2021). Analysis of rearrangements of the CFTR gene in patients from Turkey with CFTR-related disorders: frequent exon 2 deletion. Journal of Human Genetics 66, 315-320. DOI: 10.1038/s10038-020-00859-w DOI: https://doi.org/10.1038/s10038-020-00859-w

Férec, C., and Scotet, V. (2020). Genetics of cystic fibrosis: Basics. Archives de Pédiatrie 27, eS4-eS7. DOI: 10.1016/S0929-693X(20)30043-9 DOI: https://doi.org/10.1016/S0929-693X(20)30043-9

Gabel, M. E., Galante, G. J., and Freedman, S. D. (2019). Gastrointestinal and Hepatobiliary Disease in Cystic Fibrosis. Semin Respir Crit Care Med 40, 825-841. DOI: 10.1055/s-0039-1697591 DOI: https://doi.org/10.1055/s-0039-1697591

Ghani, M. U., Sabar, M. F., and Akram, M. (2021). Smart approach for cost-effective genotyping of single nucleotide polymorphisms. Kuwait Journal of Science 48. DOI: 10.48129/kjs.v48i2.8957 DOI: https://doi.org/10.48129/kjs.v48i2.8957

Ghani, M. U., Sabar, M. F., and Awan, F. I. (2022). WS21.03 Low-cost chain termination DNA sequencing PCR reaction to diagnose CFTR gene mutations. Journal of Cystic Fibrosis 21, S41-S42. DOI: 10.1016/S1569-1993(22)00275-2 DOI: https://doi.org/10.1016/S1569-1993(22)00275-2

Ghani, M. U., Sabar, M. F., Bano, I., Shahid, M., Akram, M., Khalid, I., Maryam, A., and

Khan, M. U. (2019a). Evaluation of ADAM33 gene's single nucleotide polymorphism variants against asthma and the unique pattern of inheritance in Northern and Central Punjab, Pakistan. Saudi Medical Journal 40, 774-780. DOI: DOI: 10.15537/smj.2019.8.24411 DOI: https://doi.org/10.15537/smj.2019.8.24411

Ghani, M. U., Sabar, M. F., Bano, I., Shahid, M., Akram, M., Khalid, I., Maryam, A., and Khan, M. U. (2019b). Inheritance Pattern of Rs2280089, Rs2280090, Rs2280091 Snp Variants in Punjabi Population and Association with Asthma Disease. Chest 155, 168A. DOI: 10.1016/j.chest.2019.02.162 DOI: https://doi.org/10.1016/j.chest.2019.02.162

Ghani, M. U., Sabar, M. F., Shahid, M., Awan, F. I., and Akram, M. (2017). A report on asthma genetics studies in Pakistani population. Advancements in Life Sciences 4, 33-38.

Goetz, D., and Ren, C. L. (2019). Review of Cystic Fibrosis. Pediatric Annals 48, e154-e161. DOI: 10.3928/19382359-20190327-01 DOI: https://doi.org/10.3928/19382359-20190327-01

Goodchild, M. C., Insley, J., Rushton, D. I., and Gaze, H. (1974). Cystic fibrosis in 3 Pakistani children. Arch Dis Child 49, 739-41. DOI: 10.1136/adc.49.9.739 DOI: https://doi.org/10.1136/adc.49.9.739

Granados, A., Chan, C. L., Ode, K. L., Moheet, A., Moran, A., and Holl, R. (2019). Cystic fibrosis related diabetes: Pathophysiology, screening and diagnosis. Journal of Cystic Fibrosis 18, S3-S9. DOI: 10.1016/j.jcf.2019.08.016 DOI: https://doi.org/10.1016/j.jcf.2019.08.016

Hanssens, L. S., Duchateau, J., and Casimir, G. J. (2021). CFTR Protein: Not Just a Chloride Channel? Cells 10. DOI: 10.3390/cells10112844 DOI: https://doi.org/10.3390/cells10112844

Khan, M. U., Sakhawat, A., Rehman, R., Wali, A. H., Ghani, M. U., Akram, A., Javed, M. A., Ali, Q., Yu-Ming, Z., Ali, D., and Yu-Ming, Z. (2024). Identification of novel natural compounds against CFTR p.Gly628Arg pathogenic variant. AMB Express 14, 99. DOI: 10.1186/s13568-024-01762-9 DOI: https://doi.org/10.1186/s13568-024-01762-9

Martínez-Jiméne, S., Rosado-de-Christenson, M. L., and W. Carter, B. (2017). Cystic Fibrosis. In "Specialty Imaging: HRCT of the Lung", pp. 488-491. Elsevier. DOI: https://doi.org/10.1016/B978-0-323-52477-3.50138-4

Massie, J., Gaskin, K., Asperen, P. V., and Wilcken, B. (2000). Sweat testing following newborn screening for cystic fibrosis. Pediatric Pulmonology 29, 452-456. DOI: 10.1002/(sici)1099-0496(200006)29:6<452::aid-ppul7>3.0.co;2-h DOI: https://doi.org/10.1002/(SICI)1099-0496(200006)29:6<452::AID-PPUL7>3.3.CO;2-8

Mehdi, Z., Khalid, I., Bano, I., and Ghani, M. U. (2023). Association of TSLP Gene’s SNP Variants with Asthma Disease in Pakistan. Pakistan Journal of Zoology. 56, 3159-3165 DOI: 10.17582/journal.pjz/20230218070210 DOI: https://doi.org/10.17582/journal.pjz/20230218070210

Merjaneh, L., Hasan, S., Kasim, N., and Ode, K. L. (2022). The role of modulators in cystic fibrosis related diabetes. Journal of Clinical & Translational Endocrinology 27, 100286. DOI: 10.1016/j.jcte.2021.100286 DOI: https://doi.org/10.1016/j.jcte.2021.100286

Morales, C. A. M., Gonzalez-Urquijo, M., Flores, L. F. M., Quevedo-Fernandez, E., Huerta, E. A. G., and Hernández-Torre, M. M. V. (2020). Proximal intestinal obstruction syndrome (PIOS) in a patient with cystic fibrosis: A case report. Annals of Medicine and Surgery 60, 669-672. DOI: 10.1016/j.amsu.2020.11.063 DOI: https://doi.org/10.1016/j.amsu.2020.11.063

Naeem, F., Sabar, M. F., Ghani, M. U., Ain, Q., and Zafar, Q. U. A. (2020). Identification of Diagnostic and Therapeutic Target Genes to Address Asthma Disease in Pakistan. Chest 157, A213. DOI: 10.1016/j.chest.2020.05.239 DOI: https://doi.org/10.1016/j.chest.2020.05.239

Pagin, A., Sermet-Gaudelus, I., and Burgel, P. R. (2020). Genetic diagnosis in practice: From cystic fibrosis to CFTR-related disorders. Archives de Pédiatrie 27, eS25-eS29. DOI: 10.1016/S0929-693X(20)30047-6 DOI: https://doi.org/10.1016/S0929-693X(20)30047-6

Rafique, H., Safdar, A., Ghani, M. U., Akbar, A., Awan, F. I., Naeem, Z., Amar, A., Awan, M. F., Wajahat Ullah, S., and Shaikh, R. S. (2024). Exploring the diversity of CFTR gene mutations in cystic fibrosis individuals of South Asia. J Asthma 61, 511-519. DOI: 10.1080/02770903.2023.2297365 DOI: https://doi.org/10.1080/02770903.2023.2297365

Sabar, M. F., Akram, M., Awan, F. I., Ghani, M. U., Shahid, M., Iqbal, Z., Kousar, S., and Idrees, M. (2018). Awareness of Asthma Genetics in Pakistan: A Review with Some Recommendations. Advancements in Life Sciences 6, 1-10.

Sabar, M. F., Ghani, M. U., Farooq, A., Ashiq, S., Akram, M., and Iqbal Awan, F. (2023). A Comprehensive Review on Asthma: Pathophysiology, Treatment and Role of Genetics. International Journal of Pharmacy & Integrated Health Sciences 4, 94-100. DOI: 10.56536/ijpihs.v4i2.103 DOI: https://doi.org/10.56536/ijpihs.v4i2.103

Sabar, M. F., Ghani, M. U., Ramzan, K., and Hussain, M. (2020). Whole Exome Sequencing Identifies the Asthma Susceptible Variants in the Punjab Province of Pakistan. Chest 157, A17. DOI: 10.1016/j.chest.2020.05.020 DOI: https://doi.org/10.1016/j.chest.2020.05.020

Safdar, A., Ghani, M. U., Bano, I., Mehmood, T., Akbar, A., Awan, F. I., Rafique, H., Sabar, M. F., Tajamal, M., and Shaikh, R. S. (2024). P258: Diversity of CFTR mutations in a Pakistani population: Implications for comprehensive genetic testing and genetic counseling in cystic fibrosis. Genetics in Medicine Open 2, 101154. DOI: 10.1016/j.gimo.2024.101154 DOI: https://doi.org/10.1016/j.gimo.2024.101154

Safdar, A., Ghani, M. U., Bano, I., Mehmood, T., Rafique, H., Sabar, M. F., Akbar, A., and Shaikh, R. S. (2025). Cystic fibrosis in Pakistan: population harbouring rare variants non-responsive to CFTR modulators and the dilemma of poor health facilities. Molecular Biology Reports 52, 155. DOI: 10.1007/s11033-025-10258-z DOI: https://doi.org/10.1007/s11033-025-10258-z

Safdar, A., Ghani, M. U., Bano, I., Rafique, H., Sabar, M. F., Mumtaz, A., Akbar, A., and Shaikh, R. S. (2023). P027 Mutational analysis of CFTR gene in Pakistani cystic fibrosis patients. Journal of Cystic Fibrosis 22, S71-S72. DOI: 10.1016/s1569-1993(23)00403-4 DOI: https://doi.org/10.1016/S1569-1993(23)00403-4

Safi, C., Zheng, Z., Dimango, E., Keating, C., and Gudis, D. A. (2019). Chronic Rhinosinusitis in Cystic Fibrosis: Diagnosis and Medical Management. Medical Sciences 7, 32. DOI: 10.3390/medsci7020032 DOI: https://doi.org/10.3390/medsci7020032

Shah, U., Frossard, P., and Moatter, T. (2009). Cystic fibrosis: Defining a disease under-diagnosed in Pakistan. Tropical medicine & international health : TM & IH 14, 542-5. DOI: 10.1111/j.1365-3156.2009.02253.x DOI: https://doi.org/10.1111/j.1365-3156.2009.02253.x

Shah, U., and Moatter, T. (2006). Screening for cystic fibrosis: the importance of using the correct tools. Journal of Ayub Medical College 18.

Shah, U., Moatter, T., and Bhutta, Z. (2006). Profile and factors determining outcome in a cohort of cystic fibrosis patients seen at the Aga Khan University Hospital, Karachi, Pakistan. Journal of tropical pediatrics 52, 132-135. DOI: 10.1093/tropej/fmi080 DOI: https://doi.org/10.1093/tropej/fmi080

Stewart, B., Zabner, J., Shuber, A. P., Welsh, M. J., and Paul B. McCray, J. (1995). Normal Sweat Chloride Values Do Not Exclude the Diagnosis of Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine 151, 899-903. DOI: 10.1164/ajrccm/151.3_Pt_1.899 DOI: https://doi.org/10.1164/ajrccm.151.3.7533604

Tournier, A., Murris, M., Prevotat, A., Fanton, A., Bettiol, C., and Parinaud, J. (2019). Fertility of women with cystic fibrosis: a French survey. Reproductive BioMedicine Online 39, 492-495. DOI: 10.1016/j.rbmo.2019.04.128 DOI: https://doi.org/10.1016/j.rbmo.2019.04.128

Yousaf, S., Sumaira, Bano, I., Rehman, A., Kousar, S., Ghani, M. U., and Shahid, M. (2024). Case Study: Analyzing CFTR Mutations and SNPs in Pulmonary Fibrosis Patients with Unclear Symptoms. Case Rep Med 2024, 8836342. DOI: 10.1155/2024/8836342 DOI: https://doi.org/10.1155/2024/8836342

Zakar, R., Zakar, M. Z., and Aqil, N. (2014). Adverse birth outcomes associated with consanguineous marriage in Pakistan. International Journal of Gynecology & Obstetrics 127, 211-212. DOI: 10.1016/j.ijgo.2014.06.013 DOI: https://doi.org/10.1016/j.ijgo.2014.06.013

Published

2025-07-13

How to Cite

SAFDAR, A., RAFIQUE, H., BANO, I., GHANI, M., SADAQAT, N., SABAR, M., KHAN, M., SHAHID, M., AROOJ, R., AKRAM, A., KANWAL, F., & MEHMOOD, T. (2025). IDENTIFICATION OF EXON 12 MUTATIONS IN THE CFTR GENE USING A COST-EFFECTIVE CAPILLARY ELECTROPHORESIS (CE) ASSAY. Bulletin of Biological and Allied Sciences Research, 2025(1), 103. https://doi.org/10.64013/bbasr.v2025i1.103