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Abstract The world's agricultural productivity has been on the decline due to salinity, which is a significant abiotic 

element. To find a solution to this problem, researchers have been concentrating their efforts on the enzymes and 

biochemical pathways involved in salt tolerance. The ultimate objective is to develop crops that are resistant to salt. 

Developments in molecular biology have facilitated the production of salt-tolerant cultivars by conventional breeding 

techniques. A significant amount of salt can inhibit the growth of rice (Oryza sativa L.), a major food crop in many 

nations. This is especially true during the early stages of plant development. Rice's physiological, molecular, and 

biochemical reactions to excessive salinity have been the subject of significant exploration and investigation. The 

possible applications and implications of salinity tolerance are also discussed in this article, as well as the approaches 

that can be used to locate plants that are tolerant of salt. 
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Introduction 

Poaceae is the family to which rice (Oryza sativa L) 

belongs. Rice has n = 12 chromosomes as its 

fundamental number (Mohapatra et al., 2022; 

Shchapova, 2012). The species has the option of being 

tetraploid or diploid. Regarding this, Oryza 

glaberrima L. and Oryza sativa L. The two species are 

diploid (2n=24). Asian rice (Oryza sativa L) is the first 

agricultural crop with a fully sequenced genome. Rice 

is an important food crop because it is a staple in many 

countries. Over three billion people depend on it for 

50–80% of their calories (Mohidem et al., 2022). 

About one-third of the total carbohydrate supply is 

produced by it. It offers the significant quantity of zinc 

and niacin that is advised. Because rice has a very 

high digestion, it has the highest biological protein 

(88%). Almost 90% of the land in Asia is planted to 

this crop, the world's second-most important crop 

after wheat. The crop is used for various purposes in 

India, including religious ceremonies, flour, rice bran 

oil, snacks, and brewed drinks. The crop's therapeutic 

benefits extend the list further (Ahmed, 2021; 

McHugh, 2021). Throughout history, rice farming has 

been the main industry in India. Approximately 650 

million tons of crops are produced by rice on 156 

million hectares of land worldwide (Anand et al., 

2022). This food crop is grown throughout 149.15 

million hectares worldwide, producing around 550.19 

million tons in India over a 44.6-million-hectare area. 

Rice production in India is second in the world behind 

China in land area and quantity. Rice is essential to 

India's economy and industry, accounting for 23% of 

global rice production and 45% of food grain 

production (Fahad et al., 2019; Samal et al., 2022).  

Nonetheless, given the growing population, there is an 

immediate need to boost agricultural output to 

maintain the country's food supply and a livelihood 

security framework. India is a prominent rice supplier 

specializing in basmati rice (Sharma et al., 2020). But 

to maintain the country's food and livelihood security 

system, there is an urgent need to enhance agricultural 

output due to the growing population. India is a 

prominent rice supplier specializing in basmati rice 

(Sofi et al., 2020). 

Salinity stress 

Salinity reduces crop productivity (Majeed et al., 

2019). Mg2+, Ca2+, Na+, SO4
2-, Cl-, and HCO3- are 

abundant in saline soils. High K+, CO3
2-, and NO3- 

levels are also common. The soil is saline when its 

electrical conductivity (EC) is 4 dS/m (Anjum et al., 

2023; Chandel et al., 2022; Sakai et al., 2020), 

corresponding to 40 mM NaCl, and its osmotic 

pressure is 0.2 MPa. High EC can significantly 
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diminish agricultural yields. Saline soils are pH 7-8.5 

(Thorat et al., 2018; Yadav, 2022). Low precipitation 

and excessive evaporation in dry and semi-arid 

environments prevent salts from leaching from the 

soil profile, causing salt buildup. This is a common 

reason for dry and semi-arid salinity (Meena et al., 

2022). Furthermore, the process has been further 

enhanced by the weathering of the parent rocks 

(Hussain et al., 2018; Li et al., 2022). Due to seawater 

overflow, salinity is a well-known natural 

phenomenon near seashores. However, two of the 

several well-known human causes of salinity are 

irrigation and land clearance (Kumar and Sharma, 

2020). Salinity has been a possible danger to over 900 

million hectares of land, or around 20% of all 

cultivated land and half of all irrigated land worldwide 

salt (Zaman et al., 2018). Approximately one billion 

hectares of land are impacted. The scenario describes 

India's 8.4 million hectares of salinized soil (Sharma 

and Singh, 2019). Even though irrigated land makes 

up just 15% of all agricultural land in India, it 

produces roughly one-third of global consumption 

and is twice as efficient as rain-fed land. Given the 

information above and the current situation, salt-

tolerant genotypes must be developed soon. 

Salinity Controls Production: An Important 

Environmental Limitation 

Agricultural soil salinity is a major cause of global 

agricultural production loss. Around 6% of the Earth's 

surface, 800 million hectares of land have been 

damaged by salt. Of 1500 million acres of dry land 

cultivation, secondary salinity has destroyed 32 

million hectares (2%). High salt levels damage 45 

million hectares (20%) of irrigated land, totalling 230 

million (Munawar et al., 2020). Ancient humans faced 

soil salt as an abiotic stress before cultivation. Modern 

irrigation and farming have exacerbated the 

devastation of this abiotic stressor (Tessema et al., 

2022). The effects of saltiness on plants greatly affect 

the output and effectiveness of farming. Two kinds of 

stress are caused by salinity: osmotic stress (which 

starts with ionic stress and is harmful because of high 

ionic concentration) and higher osmotic potential in 

the rhizosphere because of high salt concentration 

(Arif et al., 2020; Hussain et al., 2019). High salt 

levels can slow plant growth due to higher Na+ levels 

(Safdar et al., 2019), cause flowers to bloom later, 

lower fertility, and cause grains to be lost, which can 

make it hard for rice panicles to form (Hu et al., 2021; 

Parida et al., 2022). Low salt levels also cause P3-, K+, 

and Ca2+ levels to drop (Ahmed et al., 2023) and stop 

photosynthesis from happening. Because salinity is a 

polygenic trait, plants respond to it differently. This 

makes responses unpredictable. Most plants have 

developed ways to handle and control the amount of 

NaCl present. NaCl is very soluble and is found in 

many things. To do this, either the roots can 

effectively keep out Na+ and Cl- or the roots can 

selectively take them in (Ali et al., 2015; Ali et al., 

2016; Ali et al., 2014; Rodríguez Coca et al., 2023). 

The exclusion principle helped generate halophytes, 

which thrive in extremely salty soils. Once salt 

concentration hits 450 mM, plants like Hordeum 

marinum reject sodium and chloride ions. Triplex 

halimus, another halophyte, contains trichomes on its 

surface that tolerate salt. These hairs help the plant 

store salts and protect leaf tissues from salt stress. 

Barley is the most salt-tolerant, followed by bread and 

durum wheat, and rice is the most vulnerable. 

Interestingly, dicots react differently to salt than 

monocots. Scientists have discovered salt tolerance 

mechanisms by comparing wild-type and halophytic 

plant responses. The wild-type plant Arabidopsis 

ceases growing at 100 mM salt, yet its halophytic 

cousin, the llungiella, thrives with little effect. This 

shows these plants' selective salt tolerance.  

High salinity affects rice growth 

Rice is grown in 114 countries worldwide and is a 

crop of significant economic importance (Asibi et al., 

2019). Abiotic and biotic stressors, however, have the 

potential to lower production. This issue will worsen 

in awareness of the growing world population and the 

shortage of food sources (Teshome et al., 2020). Salt 

is more harmful to rice throughout its vegetative and 

reproductive stages (Gerona et al., 2019; Teshome, 

2020). Due to gene additive effects, rice genotypes 

vary in salt tolerance (Chattopadhyay et al., 2020; 

Gerona, 2019). Rice is more robust during 

reproductive and grain-filling than germination and 

vegetative stages (Santanoo et al., 2023). Salinity 

induction at lower levels can improve rice's salt 

tolerance (Ganie et al., 2019). After drought, salt has 

become the second largest stressor and rice 

production hurdle (Fahad et al., 2019). Salinity affects 

rice development and yields under field 

circumstances, and several paddy germplasms have 

been tested for salt resistance (Ravikiran et al., 2018). 

Salinity affects rice growth 

Numerous morpho-physiological research has been 

completed so far to create salt-tolerant rice cultivars. 

This strategy's primary goal was to increase genetic 

diversity between the parents' genetics. Plants react to 

salt randomly and organically. According to reports, 

rice is sensitive throughout the seedling and 

reproductive phases of the crop (Gerona et al., 2019; 

Wang et al., 2019; Wu et al., 2019), which has led to 

a decrease in crop production and output. Regarding 

rice, salinity has been discovered to cause 

physiological and metabolic alterations that impede 

development and reduce production (Arif et al., 

2020). True salt-tolerant lines have been evaluated 

using plant height, dry weight, leaf damage, and Na+-

K+ ratio to examine the physiological effects of salt 

accumulation (Chaurasia et al., 2020; Wangsawang et 

al., 2021). Salinity has various effects on rice, 

including inhibiting germination, making it harder to 

establish crop areas, developing leaf areas, reducing 

the amount of dry matter produced, delaying seed set, 

and sterility (Hussain et al., 2018). The effects of 

salinity on seedling growth and grain production 
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factors, including tiller and spikelet numbers, have 

been extensively studied. High salinity consistently 

reduces grain yield. A comprehensive study of 

varying floodwater salinity across rice types showed 

the importance of salt tolerance in rice productivity. 

Further research has indicated that floodwater 

electrical conductivity (EC) can reduce yield by up to 

80% and germination rate by roughly 50% for the 

most vulnerable rice cultivar, depending on salt 

exposure. Additionally, independent of the season, 

salt decreased the number of spikelets per panicle, a 

rise in sterility, 1000 grain weight, and phase of 

development (Paik et al., 2020; Radanielson et al., 

2018). 

Morpho-physiological change 

Rice's diverse reaction should be used to study its salt 

stress tolerance. A complete examination of rice's 

salinity response must include the physiological 

processes that activate its defense mechanisms under 

stress. The osmotic effect, which decreases osmotic 

potential, causes stress, followed by the ionic effect, 

which causes ion toxicity. Rice's mitochondria and 

chloroplasts are particularly vulnerable, according to 

a study. Thus, chlorophyll content, fluorescence 

(Fv/Fm), and membrane permeability can help 

explain how salt inhibits photosynthetic efficiency. 

Studies have also found that salt stress reduces rice 

leaf area and structure under greenhouse or in vitro 

environments. Ultrastructural investigations show salt 

disrupts photosynthetic activities by expanding 

thylakoid and damaging leaf chloroplasts. Salinity 

also affects mesophyll tissue, harming vascular 

bundles. 

Understanding the harmful ionic effect of salt on 

plants requires evaluating the crop plant's reaction at 

later stages. The plant reduces the majority of the 

harmful effects of sodium salt buildup by the 

following methods: (a) selective ion absorption, (b) 

salt exclusion, and (c) control of the K+/Na+ ratio 

(Iqra et al., 2020a; Iqra et al., 2020b; Jam et al., 2023; 

Mazhar et al., 2020; Wang et al., 2022). A study of the 

ultra-structure of the roots revealed how saline 

penetrates rice and how the crop plant responds by 

increasing the pace.  According to [69], vacuolation 

and vesiculation reduce the mucilage produced in 

treated plants compared to control. It has been 

proposed that there is a significant association 

between the amount of sodium present, the K+/Na+ 

ratio, seedling development, and grain yield under salt 

stress (Naseem et al., 2020; Pour-Aboughadareh et al., 

2021; Saddiq et al., 2020; Sarwar et al., 2022; Sarwar 

et al., 2021). 

Morpho-physiological evaluations were done to 

determine the salt tolerance of cultivars. Tiller count, 

leaf area, panicle length, root length, biomass, dry 

weight, and RGR were measured. Relative water 

content (RWC) in leaves can indicate the presence of 

osmoprotectant, which protects cells from salt stress-

induced dehydration. Prakash et al. (2019) found that 

native landraces may include salt tolerance genes. 

Hence, the Salt Tolerance Index (STI) should be 

considered when morpho-biochemically evaluating 

them. Thus, these landraces may be useful for study 

and development. Therefore, by evaluating various 

cultivars at the morpho-physiological level, it was 

possible to develop a thorough understanding of the 

various physiological mechanisms the crop plant uses 

to respond to salt stress. Still, this analysis could not 

shed light on the precise defense mechanisms, 

pathways, and components directly or indirectly 

involved in the process (Ghafoor et al., 2020; Iqbal et 

al., 2021; Khadka et al., 2020). 

Biochemical cellular reaction 

Two main ways salinity impacts agricultural plants. 

When salt concentration rises, plants' osmotic 

potential rises, and their water potential falls (Okon, 

2019). This can reduce water availability and damage 

plants. To combat this, plants accumulate huge 

amounts of low-molecular-weight inorganic ions or 

organic solutes through osmotic adjustment (Polash et 

al., 2019). Examples are low-molecular-weight 

sugars, organic acids, polyols, proteins, amides, 

amino acids, and quaternary ammonium compounds. 

Osmolytes help plants adjust to salinity changes and 

stay hydrated. Second, ionic stress occurs when salt 

accumulation is deadly, harming plants. 

Understanding these two mechanisms is essential to 

reducing salinity's negative effects on crops. Salt 

stress promotes proline assimilation in higher plants 

(Torre-González et al., 2018). Anee, et al. (2019) 

found rice with increased proline, active participation 

in osmotic adjustment, membrane and enzyme 

protection, and energy and nitrogen delivery after salt 

exposure. Several plants respond to salt stress by 

using soluble carbohydrates and starch as osmotic 

agents, such as Karalija et al. (2018) reporting a rise 

in sugar levels in shoots, and Prathap et al. (2019) 

discovered an increase in starch in rice roots. 

Optimizing primary metabolism store resources aids 

osmotic compensation. Syeed et al. (2021) found that 

rice's glycine betaine accumulation reduces salt's 

negative effects. 

It has been reported that these chemicals actively 

modify osmotic processes, strengthen cellular 

macromolecules, and store nitrogen. The elimination 

of reactive oxygen species, the detoxification of cells, 

and the preservation of the appropriate pH levels 

within cells depend on their presence. Alterations in 

protein levels or accumulation are yet another strategy 

for countering the effects of salt. According to 

Alkharabsheh et al.'s research from 2021, exposure to 

salinity can result in the formation of new proteins or 

an increase in the production of certain proteins 

already present in the plant, increasing the 

concentration of such proteins. The proteins found in 

plants grown in salty settings serve as a sort of 

nitrogen storage when the conditions are not stressful. 

In addition, the creation of proteins is essential for 

regulating osmotic pressure. The levels of soluble 

protein-intolerant rice seedlings were much higher 
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than those of sensitive rice seedlings, and there was a 

positive association between the two. 

Precise and Directed Molecular Response and Cell 

Communication 

To choose breeding lines that can tolerate salt, efforts 

have been made to understand salinity tolerance at 

both the molecular and genetic levels. Research that 

was done in the past on the mechanisms of salinity 

tolerance in rice has demonstrated that this abiotic 

stress is complicated and can result in a variety of 

responses in plants that span both the same species 

and distinct varieties (Thorat et al., 2018). To screen 

for salt tolerance using molecular markers, genetic 

diversity was evaluated in many genotypes using 

RFLP, SSLP mapping, and RAPD and SSR analysis 

techniques. Both of these methods were utilized to 

screen for salt tolerance. Traditional techniques, 

including insertional mutagenesis and positional 

cloning, were utilized to acquire a more 

comprehensive understanding of the inheritance of 

salinity in rice (Panini et al., 2021). Several genes in 

rice, including de novo genes, salt, and catalase, are 

elevated in response to high salt levels, according to 

research that was conducted in the past (Singh et al., 

2018). Osmotic stress, also known as Osmo-sensing, 

is something that plants can sense, enabling them to 

adapt to salinity stress effectively. Although 

physiological mechanisms can help explain 

alterations at the cellular or tissue level, the 

knowledge of the signaling pathway caused by this 

stress is mostly based on the control and regulation 

imposed by genetic programming. In addition, 

research on Arabidopsis thaliana mutants uncovered 

several regulatory genes and pathways involved in 

salinity tolerance. These include the Plantago thaliana 

Histidine kinase (Keisham et al., 2018), Ca+ 

dependent protein kinases (CDPKs) (Wen et al., 

2020), Map kinases (MAP kinases) (Bhatt et al., 

2020), and the SOS pathway (Ali et al., 2023). 

Because salinity tolerance is a polygenic trait, 

researchers have also concentrated on locating 

quantitative trait loci (QTLs) commonly related to this 

characteristic. In a population of F8 recombinant 

inbred lines (RIL) derived from the Pokkali X IR29 

cross, a substantial quantitative trait locus (QTL) 

referred to as "salt" was discovered on chromosome I 

by the utilization of AFLP markers. 

Rice QTL research has found and mapped several 

salinity-induced QTLs. These include qRL-7 for root 

length, qDWRO-9a and qDWRO-9b for dry weight 

root, and qBI-1a and qBI-1b for biomass, with strong 

QTLs on chromosomes 1 and 2 for shoot growth 

(Thorat et al., 2018). Chen et al. (2021) found 

individual QTLs related to sodium and potassium 

uptake and selectivity. Along with other studies, Yang 

et al. (2021) revealed eight QTLs for each of the three 

shoot qualities and five root traits within five 

chromosomal areas. An F2 mapping population from 

a Sadri/FL478 hybrid yielded 35 QTLs, with the 

largest QTL clusters mapped in chromosomes 2, 4, 

and 6 for several characteristics under salt stress. The 

discovery of the QTL for salt tolerance opened up new 

avenues for research on salinity and how plants 

respond to subsequent stress. Research is being done 

to construct and identify several alleles that may or 

may not be related to the corresponding salinity QTLs 

(Ali et al., 2017; Asif et al., 2020; Farooq et al., 2021; 

Sayed et al., 2021; Tahir et al., 2020). 

Rice salt-stress defense 

Plants use three primary methods to avoid salt stress. 

First, they modify their osmotic equilibrium to 

tolerate stress. Second, selective absorption and 

molecular regulation exclude sodium ions from 

leaves. Finally, compartmentalization lets plants 

endure high salt or chloride levels. High salt levels 

hinder photosynthesis, causing plants oxidative, 

osmotic, and ionic stress. Plants use xanthophyll 

pigments and transfer electrons to oxygen acceptors 

instead of water to fight this, which can produce 

reactive oxygen species. To mitigate this response, 

plants additionally upregulate catalase, ascorbate 

peroxidase, superoxide dismutase, and peroxidases. 

The plant's antioxidant defense system relies on non-

enzymatic antioxidants such as ascorbate and 

glutathione and enzymes like glutathione reductase. 

The duration between ROS production and 

antioxidant scavenging determines this system's 

efficiency. Studies reveal salt-tolerant rice cultivars 

have stronger antioxidant enzyme activity, especially 

catalase, than salt-susceptible variants. Others have 

seen a decrease in catalase activity with salt exposure, 

suggesting distinct oxidative responses in rice. These 

contradicting results suggest more research on 

antioxidants and salt stress defense in plants. 

Salinity stress intolerance screening 

The susceptibility of plants to salinity throughout 

development impacts their salt tolerance. Research 

shows that rice plants are more sensitive to salt during 

early growth but less sensitive during reproduction 

(Singh et al., 2021). Proper screening is needed to 

assess how rice germplasms react to salt. Both 

sensitive phases of paddy can be screened. Screening 

seedlings is easy and fast with clear instructions. This 

can be done in a lab or field. However, soil variability, 

climate, and other environmental factors might affect 

the plant's physiological activities, making field 

screens difficult. Salt tolerance is complicated by 

temperature and humidity, which alter 

evapotranspiration and ion transport (Resende et al., 

2019). Thus, lab screenings have many advantages 

over field screenings. Many physiological, 

pharmacological, and molecular factors affect plant 

growth and development. Early attempts to find 

salinity-tolerant plants used agronomic features. Early 

experiments produced salt-resistant genotypes using 

classic selection and breeding methods. 

Morphological screening assessed physiological and 

agronomic parameters. Root length, shoot length, 

plant biomass, and shoot Na+/K+ ratio are good 

salinity tolerance indicators for morphological 
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screening (Huqe et al., 2021; Pour-Aboughadareh, 

2021). Morphological screening should start 10 days 

after exposure to a saline solution to accurately 

identify tolerant and susceptible genotypes (Afzal et 

al., 2023). 

Since the environment significantly impacts 

agronomic parameters, assessing salt tolerance based 

on them may not be profitable. Many scientists use 

biochemical screening to understand salt tolerance 

mechanisms and levels better. This has provided 

insights and markers on cellular, tissue, and whole-

plant salt tolerance (Morton et al., 2019; Rasel et al., 

2021; Saradadevi, 2021). With this understanding, 

salt stress biochemical pathways and plant defense 

systems can be identified. In particular, rice molecular 

screening has revealed its salt stress response and 

identified salt-tolerant genes (Gul et al., 2022; 

Sampangi-Ramaiah et al., 2020). Saradadevi et al. 

(2021) identified a salt QTL, enabling genetics 

studies. 

Conclusion 

After drought, salinity is the second most destructive 

abiotic stressor that affects rice productivity and 

output worldwide. The primary food crop that is 

grown in many nations worldwide. The demand for 

rice is rising with the world's growing population. As 

a glycophyte, rice is sensitive to salinity by nature and 

responds broadly and vividly to the negative 

consequences of excessive salt buildup. Rice uses a 

plant defense mechanism to reduce salt toxicity's 

physiological, biochemical, and molecular effects. 

Here is an extensive analysis of the numerous studies 

conducted to understand the relationship between salt 

and crop response. It has been extremely difficult to 

mention the precise method of mitigating stress 

because of its polygenic character. Recent discoveries 

of metabolic pathways, enzyme complexes, 

regulatory genes, and QTLs have illuminated the 

processes during this abiotic stress. Accruing 

information about the crop's reaction to salt is crucial 

given salinity's disastrous impact on this essential 

food crop. This will support ongoing efforts to 

increase saltwater tolerance and create salinity-

tolerant animals. Many studies are being carried out 

worldwide to comprehend salinity and the intricate 

processes of rice to mitigate the same. In this context, 

it is crucial to summarize all the research to 

comprehend the relationship between salt and rice. To 

better understand the reaction and, consequently, the 

plant defense against salt as a stress, the key 

contributions and discoveries achieved in this field are 

briefly summarized in this study. 
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