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Abstract The molecular marker method has come a long way in the last 30 years. Genetic research has advanced 

from RFLPs to SNPs. Array technology was also used. Sequencing progress has also led to the creation of low-cost 

NGS systems with high throughput. Phenotyping has been very important in making this progress possible. Markers 

for important crops like rice, corn, and potatoes have been worked on, but markers for crops that aren't used much 

haven't been studied as much. Phylogenetics and molecular ecology are other areas that don't know much about 

molecular markers. Plant breeding and DNA modification have greatly changed since recent improvements to 

CRISPR technology. To the contrary, some MAS (marker-assisted selection) methods need to know about the genome 

beforehand, which makes the work even harder. Researchers in plant science might find the methods discussed in this 

review piece useful as a database. They could use them alone or with other sequence-level characters from different 

fields. 
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Introduction 

The Green Revolution began in the 1960s, and wheat 

and rice yields have been much higher than they could 

have been. This has helped avoid serious food 

shortages (Conway, 2019). Although funding has 

decreased, people have always thought plant breeding 

efforts would continue, leading to better yields. 

However, the Green Revolution's push for intense 

farming has led to more pests and diseases farming on 

land that wasn't as good for crops (Montgomery, 

2017). Farmers use high-yielding semi-dwarf types 

that geneticists and breeders have been able to find 

new genetics from traditional landraces (Mefleh et al., 

2019; Tahir et al., 2020). Marker-assisted selection 

(MAS) is a method that has been used to find and copy 

hundreds of genes from different species (Boopathi 

and Boopathi, 2020). Many cloned genes have big 

effects on the rice crop, making it a good example of 

the pros and cons of metabolic engineering. There are 

many more identified QTLs than this value, making it 

a useful tool in marker-assisted selection. This new 

method avoids some problems with traditional 

breeding and improves the selection criteria of 

phenotypes by choosing specific genes directly or 

indirectly. DNA or molecular markers differ from 

traditional breeding methods because they don't 

depend on the environment and can be seen at 

different times of plant growth. Now that there are 

many molecular markers and genetic maps to choose 

from, it is possible to use molecular markers to help 

in the selection of both dominant and quantitative 

traits. An effective molecular marker can distinguish 

molecular markers by detecting nucleotide sequence 

changes. These variations can be identified by RFLP, 

AFLP, SSR, RAPD, CAPS, SSCP, SNPs, and others 

(Amiteye, 2021). Multiple elements must work well 

for molecular markers to work in breeding methods. 

1. Genetic map with closely linked markers to 

agriculturally significant genes or QTLs 

 2. Markers closely linked to QTLs or main genes 

 3. Adequate recombination between desirable 

markers and genome 
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4. Time and cost-effective analysis for large 

populations. 

Most molecular-assisted selection (MAS) systems 

that work depend on a certain type of molecular 

markers. With the help of one or more quantitative 

trait loci (QTLs), these markers can tell you where a 

gene is located on a chromosome. So, when choosing 

genomic regions, at least one marker must be in the 

QTL region, or two polymorphic markers must be on 

each side. Using either strategy; the following 

examples show how to add QTLs into varied genetic 

systems. MAS enhances features regulated by a few 

genes, as shown in this study. However, MAS hasn't 

been very good at finding more complicated traits 

because of several problems (Bora, 2023). There are 

some problems with using MAS for quantitative traits, 

but this review discusses some good examples and 

offers ways to make MAS work better for QTLs. 

Figure 1 shows how molecular marker-assisted 

selection works in its most basic form. 

Marker-assisted selection (MAS) uses different 

kinds of DNA markers 

When using DNA markers in MAS, dependability, 

quantity, quality, type, amount, specialist marker 

analysis techniques, degree of polymorphism, and 

cost must be considered (Amiteye, 2021). 

Increasing Reliability 

Markers should be within 5 centimetres of genes to 

accurately predict phenotypes. Adding surrounding or 

intragenic markers improves marker accuracy and 

reliability (Hasan et al., 2021). 

Quantity and quality of DNA 

Certain marker approaches need much money and 

high-quality DNA, making procurement difficult and 

raising the procedure's cost (Billerman and Walsh, 

2019). 

Specialized framework 

Concerns about ease and speed are important when 

doing a treatment. We strongly recommend methods 

that can handle a lot of work, are simple to use, and 

work well. SCAR markers—DNA sequences like 

restriction fragment length polymorphisms (RFLPs) 

and links to genes or quantitative trait loci (QTLs)—

help marker-assisted selection (MAS) (Shimizu et al., 

2020).  

 

 
Figure 1 The image shows how marker-assisted 

selection (MAS) works in its most basic form 

(Shimizu et al., 2020) 

The categorization of molecular markers 

There are different groups for DNA or genetic 

markers based on different factors. First, we need to 

know how genes work and whether they are dominant 

or co-dominant traits. Second, the way the markers 

were found, like genetic markers based on PCR or 

hybrid markers. Third, the way the markers are passed 

on, maternal organelle inheritance, paternal nuclear 

inheritance, or biparental nuclear inheritance (Hasan 

et al., 2021; Wang et al., 2017). 

Breeding and genetic work for many types of crops 

worldwide has successfully used molecular markers 

for a long time. This review will give you an overview 

of what you need to know about molecular markers, 

especially when it comes to how to find them. Table 

1 shows a study comparing the main parts of the most 

common genetic markers. 

Table 1 A Comparison of Plant Research's Most Common DNA Markers 

Characteristics Restriction 

Fragment 

Length 

Polymorphism  

Random 

Amplified 

Polymorphic 

DNA 

Amplified 

Fragment 

Length 

Polymorphism  

Simple 

sequence 

repeats  

Single 

nucleotide 

polymorphisms   

Genomic abundance High High High Moderate to 

high 

Very high 

Genomic coverage Low copy 

coding region 

Complete 

genome 

Complete 

genome 

Complete 

genome 

Complete 

genome 

Expressions Co-dominant Dominant Dominant/co-

dominant 

Co-

dominant 

Co-dominant 
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Number of loci Small (< 1000) Small (< 

1000) 

Moderate (1000s) High 

(1000s–

10,000s) 

Very high (> 

100,000) 

Individual variability Moderate High High High High 

Types of variability Single base 

change, indel 

Single base 

change, indel 

Single base 

change, indel 

Changes in 

length 

repeat 

Single base 

change, indel 

sequencing Yes No No Yes Yes 

Type of primers Low-copy 

DNA or cDNA 

clones 

10 bs random 

nucleotides 

Specific sequence Specific 

sequence 

Allele-specific 

PCR primer 

PCR-based Usually no Yes Yes Yes Yes 

Radioactivity detection 

methods 

Usually yes No Yes or no Usually no No 

Guaranteeing Consistency 

and Dependability 

High Low High High High 

DNA quantity needed Large (5–50 

μg) 

Small (0.01–

0.1 μg) 

Moderate (0.5–1.0 

μg) 

Small (0.05–

0.12 μg) 

Small (> 0.05 

μg) 

High-throughput 

genotyping 

Low Low High High High 

The cost Moderate to 

high 

Low Moderate Moderate to 

high 

High 

Marker index Low Moderate Moderate Moderate to 

high 

Moderate 

Time demanding High Low Moderate Low Low 

Number of polymorphic per 

loci 

1.0–3.0 1.5–5.0 20.1 1.0–3.0 1 

Primary application Genetic Diversity Diversity and 

genetic 

All purposes All purposes 

DNA Marker 

Molecular markers are unique groups of nucleotides 

that can be used to study differences between people 

with these markers. They cause the polymorphisms 

seen in the population, but they don't change how 

genes work. The changes they cause include 

deletions, insertions, gene mutations, duplications, 

and translocations. A good DNA marker should be 

able to find a lot of different types of DNA, have co-

dominance, and be spread out evenly across the 

genome (Adhikari et al., 2017). 

Based On Hybridization 

Genetic markers, also called RFLPs (restriction 

fragment length polymorphisms), need a properly 

labelled DNA probe to identify the genes in which 

they are interested in DNA data. Digestion and plant 

crossing are ways to do this. The initial usage of 

RFLPs was as genetic markers, requiring 

hybridization. Gene alterations, insertions/deletions 

(InDels), duplications, translocations, and inversions 

can cause changes within a species (Jeffares et al., 

2017). RFLP begins with pure DNA from the 

intended source. We next add restriction enzymes 

from bacteria or human cells to the DNA. These 

enzymes can cleave DNA at certain nucleotide 

sequences. 

DNA Markers Based On PCR 

A probe hybridization step is not needed for PCR-

based genetic markers. Molecular markers like 

RAPD, AFLP, microsatellites or SSRs, SNPs, RAMP, 

SRAP, ISSR, SCAR, ESTs, cDNA Restriction 

Fragment Length Polymorphism (RFLP), Restriction, 

and other types of markers have led to the creation of 

handy and simple new generation markers(Ramesh et 

al., 2020). With the help of primer pairs—short strings 

of nucleotides linked to DNA to make dsDNA—these 

atomic markers can focus on certain parts of DNA to 

study genetic variation (Amiteye, 2021). These 

primers are the first step to making a copy of a certain 

piece of DNA. Once the DNA has been copied, it is 

broken up and put on a gel so that different band 

shapes can be seen. After that, if needed, the DNA 

pieces can be sequenced to find any changes in the 

order that might explain differences between species 

(van der Loos and Nijland, 2021). Isolating DNA 

from its source and checking its quality and amount 

using gel electrophoresis are necessary for PCR to 

study molecular markers (Amiteye, 2021). 

Sequencing usually involves cleaning the amplified 

products, putting them through sequencing PCR, and 

then cleaning them again before sequencing 

(Pomerantz et al., 2022). SNP testing is possible with 

next-generation sequencing (Silvia et al., 2017), as 

shown in Figure 2. 
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Figure 2 For genome mapping, RAD-sequence detects and genotypes SNPs using next-generation sequencing. 

The adapter’s adapter_P1-EcoRI and adapter_P2-MspI ligate EcoRI and MspI to create RAD-tags (Silvia et 

al., 2017)

Markers of Transposability 

TEs, which are "transposable elements," are DNA 

sequences that can move around and place themselves 

into coding regions of the genome. She first found 

them in maize in 1950 by Barbara McClintock. Since 

then, more studies have shown that they are more 

common in eukaryotic genomes (Feschotte, 2023). 

Before we can fully understand TE markers, we must 

look at what they are like and how they connect to 

other genes. Each method uses different TEs' unique 

properties and uses different primer annealing sites in 

transposable regions differently. There are two types 

of TEs: class I, also called retrotransposons, uses 

RNA molecules to move to new locations in the 

genome and copy itself; and class II, also called "cut 

and paste" transposable elements, doesn't need RNA 

intermediates and can remove itself from a donor site 

before moving to a specific location in the acceptor 

genome (Piao et al., 2017). 

Gene-Based Resistance Markers 

Many animals and plants have defence mechanisms 

with resistance gene markers (Andersen et al., 2018). 

Knowing plant diseases is crucial before discussing 

these indicators. Many plants have effective biotic and 

abiotic disease defences. These systems have innate 

and adaptive immunity. R proteins (resistance 

proteins) and pathogen and pattern recognition 

receptors mediate innate immunity in plants and 

animals (Gouveia et al., 2017). In contrast, 

interference RNA controls plant adaptive immunity, 

notably during virus infections. Pathogen or pattern 

recognition receptors identify molecular patterns of 

microbes and pathogens. Similar-class bacteria have 

largely conserved receptors (Hennessy, 2017; Milc et 

al., 2019). Resistance proteins identify non-conserved 

Avr (avirulence) factors and initiate a signaling 

cascade that produces reactive oxygen species and 

programmed cell death in plant cells (Song et al., 

2021). A new plant-pathogen interaction study reveals 

that cell death does not prevent pathogen transmission 

but inhibits its mobility in neighbouring live tissues 

through an unknown mechanism (Köhl et al., 2019). 

Table 2 shows crop gene-marker relationships for 

disease resistance. 

Polymorphism of Resistance Gene Analogs 

Resistance gene analogue polymorphism (RGAP) can 

be used to find resistance genes in DNA. This method 

used degenerate primers and genomic DNA that 

haven't been cut to find R gene copies in conserved 

regions. Agar-gel electrophoresis, on the other hand, 

was not sensitive enough to find most PCR fragment 

length polymorphisms in early tests on crop species. 

The best way to separate PCR bands in plant profiling 

studies is to use polyacrylamide gel electrophoresis 

(PAGE), which has greatly improved the ability to 

separate fragment-length polymorphisms (Johnston‐

Monje and Lopez Mejia, 2020). They found that using 

R-like gene-specific primers with PAGE makes PCR 

markers correctly related to R genes (Hasan et al., 

2021). According to research, RGAP has been used 
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successfully in many areas, such as making molecular 

markers for R genes that make cells resistant to 

pathogens and studying biodiversity to learn more 

about R gene regions like NBS and LRR (Sahu et al., 

2022). 

Table 2 Comparison of Crop Disease Resistance Gene-Marker Associations
Species varieties Characteristics Genes Molecular markers References 

Triticum 

Aestivum L. 

Classification and 

Characteristics of Leaf 

Rust on Wheat (Puccinia 

recondita f.sp. tritici) 

 Lr34 from Triticum aestivum   Repeat a simple sequence (3 

times) 

(Peng and Yang, 

2017) 

     Lr35 from Triticum speltoides It has two parts: sequence-

tagged site (STS) and cleaved 

amplified polymorphic 

sequences (CAPS). 

(Gupta et al., 2017; 

Kthiri, 2017) 

  Introduction to Wheat 

Stem Rust (Puccinia 

graminis f. sp. tritici) 

 Wheat Sr31 Discovery  STS (Lapochkina et al., 

2017) 

  Puccinia striiformis 

strain causing Yellow Rust 

Tritici. 

 Wheat Yr15 Gene  Short form DNA (SSR) and 

Random Amplified 

Polymorphic DNA (RAPD) 

(Khanfri et al., 2018) 

Oryza Sativa L. Pyricularia oryzae 

makes rice blast. 

 Wheat Pi5(t) Function Investigation  CAPS (Paul et al., 2022) 

  The Gall Midge is a 

species of insect. 

 Soybean Gm7 Identification  Marker for Sequence 

Characterized Amplified Region 

(SCAR) SA598  

(Li et al., 2020) 

Zea Mays Understanding 

SCMV: Sugarcane Mosaic 

Virus 

 Corn Scm1 and Scm2 

Characterization 

 The use of SCAR and CAPS to 

study DNA 

(Kumawat et al., 

2020) 

Hordeum 

Vulgare 

Malignant Barley 

Yellow Mosaic Virus 

  rym4/rym5 study  SSR to Gene Type (Jasrotia et al., 2017) 

  Puccinia Hordei: Leaf 

Rust Cause 

Barley Rph7 Isolation CAPS for building cells (Dinh, 2020) 

RNA Markers 

During growth and development, gene expression 

regulates plant biological responses to biotic and 

abiotic stimuli. There are many ways to study these 

reactions, including using PCR-based markers. 

Fingerprinting markers amplify a specific subset of 

RNA or DNA fragments. These methods rely on 

transcribing a functional genomic region (Amiteye, 

2021). Adhikari et al. (2017) examined cDNA/EST 

markers, which are molecular markers obtained from 

expressed or transcribed genomic areas. From the 

RNA pool or cDNA or ESTs, bioinformatics tools can 

construct primers selectively or randomly.  

Studying tiny RNA polymorphism 

In eukaryotic genomes, several 20–24-base 

endogenous noncoding short RNAs regulate genes 

(Deogharia and Gurha, 2022). These small RNAs are 

a useful source for making molecular labels. Flanking 

sequences and the ability to create primers for PCR 

reactions and fingerprinting are the same. This trait is 

used by a method called Inter small RNA 

polymorphism (iSNAP), created by (Amiteye, 2021). 

Starting a PCR reaction with primer pairs of small 

RNAs on either side of the gene is how this method 

finds length differences caused by InDels in the pool 

of small RNAs (Lev et al., 2017). This high-

throughput, noncoding marker method is suited for 

repetitive application. It assists in genomic mapping 

and genotyping. 

Analysis of EST-SSR markers for Assessing 

Genetic Diversity 

EST data from cDNA conversion is in many open 

databases. ESTs, short transcribed sequences that read 

in one direction, are essential for gene expression and 

genetic diversity analysis. Researchers can access 5′ 

and 3′ gene sequences by turning cDNA into ESTs. 

The former are connected with protein coding, while 

the latter are more abundant in UTRs. Bioinformatics 

can generate EST-based molecular markers from 

these databases (Singh et al., 2019). New EST data 

has enabled the creation of plant species-specific 

microsatellites or SSR markers (Sun et al., 2021). 

EST-SSRs from transcribed genome areas amplify 

like genomic (gSSR) microsatellites but require 

different primers and positions. Sequencing data 

employing in silico approaches in plant group 

databases like Triticeae or NCBI-EST yields them. 

Species Identification using Fingerprint Markers 

Targeted fingerprinting markers (TFMs) were created 

using genetic elements. These multilocus markers 

target specific genomic areas and are developed 

purposefully. They are compared to gene or gene-

related polymorphism sites regardless of functioning. 

The gene-targeted indicators produced may not be 

linked to phenotypic mutations TFM indicators help 

discover genetic variances and uniqueness in 

numerous ways. These markers randomly band 

certain, unnamed regions using plant genetic features 

(Huider et al., 2021). Through primer design or 
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changed PCR procedures, this distributes the 

complete genome and enhances reproducibility. TFM 

can adapt to diverse organisms and offer alternatives 

to AAD markers using genomic features. 

Possible Plant Breeding Uses of MAS 

The next sections show how MAS could transform 

crop plant breeding. This overview emphasizes 

marker-assisted selection and molecular markers' 

value in plant breeding (Cobb et al., 2019). This 

includes evolution and phylogeny, marker assessment 

of breeding materials, genetic diversity-based 

parental selection, promoting heterosis, genomic 

region identification, introgression, backcrossing, 

trait pyramiding, and early-stage selection. These 

categories overlap; however, they all help establish 

high-quality plant lines (Asif et al., 2020; Balqees et 

al., 2020; Farooq et al., 2021; Ghafoor et al., 2020; 

Iqbal et al., 2021). Integrating molecular markers into 

plant breeding programs or replacing phenotypic 

selection in line development is possible (Cobb et al., 

2019). 

Transforming Cultivar Identity and Assessing 

“Purity” 

Mixing seeds from different types is common because 

it can be hard to keep track of all the seed samples 

needed for inter- and intra-plant breeding programs. It 

is possible to identify each plant by its marker. For 

grain hybrids to produce the most heterosis, it is 

important to keep the genetic purity high. SSR and 

STS markers in hybrid rice have made it easier to 

confirm purity. This contrasts the old "grow-out tests" 

method, which involved waiting for the plant to fully 

develop and evaluating its physical and reproductive 

traits (Kumar et al., 2021). 

Investigating plant heterosis 

Research indicates a maize-sorghum genetic mix. 

DNA markers revealed a promising heterosis group 

that could lead to hybrid vigour (Ali et al., 2013; Ali 

et al., 2016; Ali et al., 2014; Iqbal et al., 2021; Iqra et 

al., 2020; Mulima, 2017). Developing this hybrid line 

to develop hybrids takes time and money. DNA 

markers alone cannot properly predict heterosis, 

despite efforts. 

Criteria for selecting appropriate genomic regions 

Breeders need to be able to spot changes in the 

frequency of alleles in the genome to look for 

particular alleles or haplotypes and plan their breeding 

processes ahead of time (Ahmar et al., 2020). This 

information can also be used for other things, like 

QTL mapping, where the studied areas can confirm or 

expand on links between markers and traits that have 

already been found (Balsalobre et al., 2017). This 

information can also help make new types with the 

right mix of alleles, using marker-assisted methods 

like backcrossing or early generation selection. 

Assessing Genetic Variation and Parental 

Selection 

Plant breeding programs depend on having a lot of 

different genetic material to choose from. Finding and 

using different strains to hybridize with elite cultivars 

is important for increasing the genetic base of core 

breeding materials (Aaliya et al., 2016; Ali and Malik, 

2021; Juma et al., 2021; Mazhar et al., 2020; Mustafa 

et al., 2018; Naseem et al., 2020). Much research has 

been done on the genetic diversity of breeding 

materials for different crops. Molecular markers have 

improved this approach by providing valuable data.  

Use of markers to help with introgression 

Through hybridization and repeated backcrossing, 

introgression moves a good trait from one type of 

plant to another. Through crossing two populations 

and then repeatedly backcrossing to "B," the receiver 

or recurrent parent, Zhang et al. (2021b) explained 

introgression as a way to get a desired trait or QTL 

from a plant in population "A" into a plant in 

population "B." Markers on DNA can help with this 

process because they show when the desired quality 

or QTL is present and help the recipient's background 

genome blend in better. Using molecular markers in 

introgression is a great way to add genes or QTLs 

from landraces because it speeds up the growth of 

better varieties and eliminates the problem of linkage 

drag (Hernandez et al., 2020). 

Regeneration and lineage 

Historically, geographical factors and physical 

differences within groups were used extensively to 

study how species or traits changed. But thanks to 

progress in molecular biology, we now have a better 

idea of how an organism's genes are put together. To 

learn about a person's development and make a 

genetic map, phylogenetic studies need to use a lot of 

molecular markers (Ramesh et al., 2020). 

Chloroplasts have been very helpful because their 

genetic make-up is simple and constant. 

Precision Gene Modification Using CRISPR 

Genome Editing 

Using the CRISPR gene editing method by Zhang et 

al. (2021a) greatly improved the growth and 

development of many crop plants. Cas9 has become 

the most popular genome-altering method in recent 

years. This approach offers numerous advantages, 

including its user-friendly nature, ability to target 

methylated loci, and versatility (Pajares et al., 2021; 

Singer, 2019). Core to CRISPR are CRISPR RNAs 

and Cas proteins. TracrRNA and crRNA are essential 

for cutting a target site. They work with the most-

studied Cas protein, Cas9 endonuclease. Combining 

these two RNA molecules creates sgRNA (Zhou et al., 

2018). When sgRNA and Cas proteins join together, 

they make RNA-guided endonuclease. This enzyme 

precisely cuts target regions in the genome 

(Manghwar et al., 2020). The three types of the 

CRISPR-Cas system are named after the type of Cas 

protein they contain. Some bacteria and archaea share 

Cas1 and Cas2, but only bacteria have type I, archaea 

only have type II, and some bacteria also have type III 

(Hidalgo-Cantabrana et al., 2019). Many Genome 

editing has helped Nicotiana tabacum (Vats et al., 

2019), Arabidopsis (Vats et al., 2019), maize (Li et al., 
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2021b), and wheat (Wang et al., 2018) succeed 

(Figure 3). 

 
Figure 3 shows a schematic of CRISPR/Cas9 genome 

editing for crop enhancement (Wang et al., 2018) 

Improving Crops Using MAS 

With the rise of biotechnology and conventional 

breeding, genetic mapping has become an important 

method for finding key genes and QTLs connected to 

agricultural traits. This mapping information and 

molecular markers enable marker-assisted selection 

(MAS) to improve breeding results. The genetic basis 

of phenotypes, population size, and targeted gene 

genetic background determines MAS's efficacy. MAS 

has improved qualities impacted by a single gene, but 

yield and environmental stress tolerance have been 

difficult to improve. MAS improved quantitative 

features despite these challenges (Das et al., 2017). 

Improved genotyping and comparative and functional 

genomics have made it easier to identify genotypes 

with enhanced agronomic performance. 

Maximizing Yield with MAS 

Numerous studies have shown that MAS can boost 

agricultural output. However, identifying the best 

crops for diverse locations requires a comprehensive 

strategy integrating classic agricultural approaches 

[174] with crop modeling and QTL mapping (Mores 

et al., 2021). We'll examine how MAS has increased 

crop yields like maize and rice. 

Oryza Sativa l. (rice) 

Recent research have examined yield component QTL 

genes using advanced BC populations and Oryza 

rufipogon wild rice. These findings suggest that 53% 

(Yadavalli et al., 2022) and 33%  (Duan et al., 2022) 

of O. rufipogon's QTL alleles increase yield and yield 

components in top rice cultivars despite their poor 

performance. The second investigation found a lower 

percentage, possibly due to higher yield QTL allele 

genetic similarities between the elite line and O. 

rufipogon. Most of the identified loci in this crossover 

may have superior alleles in the elite cultivar. Several 

productive QTLs from O. rufipogon were not 

connected to any adverse QTLs, making them suitable 

for generating new parent lines. That these QTLs have 

stable effects has been shown by the fact that they 

have the same effects in people with different genetic 

backgrounds and different situations(Quero-García et 

al., 2021). 

A marker for thousand-grain weight (TGW) was 

found on chromosome 6 in a recent study. The 

researchers used a BC inbred line from the high-

yielding japonica Nipponbare and the low-yielding 

indica cultivar Kasalath (Jena and Kim, 2020). The 

TGW-boosting gene was in the indica cultivar. When 

this allele was introduced into a Nipponbare near-

isogenic line (NIL) using marker-assisted selection 

(MAS), it led to a 10% rise in TGW and a 15% rise in 

yield per plant, regardless of plant type (Gouda et al., 

2020). Molecular markers can easily identify the part 

of the genome where this yield QTL is found. This 

makes it possible to introduce this QTL into other 

high-yielding rice cultivars and increase yield further. 

Zea mays (maize) 

The use of marker-mediated backcrossing to select 

maize breeding plants is becoming common. This 

method monitors the transmission of favorable alleles 

at QTLs by foreground selection and accelerates the 

genetic background in the remaining genome through 

background selection (Tourrette et al., 2021). This 

method creates Near Isogenic Lines (NILs) in maize 

by crossing a top-performing parental line with an 

exotic donor line. Selecting for target features and 

creating the right genetic background usually requires 

markers and repeated selfing (Wilde and Miedaner, 

2021). It is possible to make different NILs with 

different introgressed genetic regions by only doing 

two backcrosses and one selfing generation. Field 

tests have shown that these NILs have gotten donor 

segments that make them produce more or less. This 

way of breeding not only makes top lines, but it also 

gives us useful information for finding and mapping 

yield QTLs. There is a possible problem with this 

method, though: it might not find good epistatic 

effects between QTLs. To solve this problem, many 

studies have tried to find a good way to guess how 

well a hybrid corn crop will do by using marker and 

phenotyping data together. Li et al. (2021a) examined 

heterosis and G×E interaction in maize by crossing 

two popular inbred lines, B73 and Mo17. Identifying 



Bull. Biol. All. Sci. Res., Volume, 9: 57                                                                                                      Ali et al., (2024)         

 

8 
 

and mapping a QTL allele predicted higher hybrid 

yield. QTL-enhanced hybrids yielded more than those 

without QTLs (Dwivedi et al., 2018). 

MAS breeding advantages above traditional 

breeding 

Food plant breeding programs use molecular or DNA 

markers. 

1. Plant growers are more interested in them because 

they have several benefits. 

2. You can get genomic DNA markers from any part 

of a food plant and use them to check plants early 

on for certain traits. 

3. This lets early selection happen and gives farmers 

control over blooming. 

4. They also let you choose from many figures, 

which would be hard to keep up with and fix 

otherwise. 

5. Molecular markers are especially helpful for 

complicated traits with many genetic parts. 

6. They can also help choose the right alleles, 

especially for traits sensitive to the surroundings. 

7. Molecular markers let you choose a single plant, 

no matter how heritable it is. 

8. They can tell the difference between heterozygous 

food plants and homozygous, and they can also 

help reduce linkage drag during backcrossing. 

9. DNA markers also make it easier and faster to 

determine the genetic background of a parent who 

appears more than once. 

10. Using them can help reduce DNA diversity while 

choosing parents for crossing. 

11. This helps heterosis exploitation and can make the 

gene makeup of top germplasm less complicated. 

Limitations on the Application of MAS 

1. MAS methods cost more than the old ways of 

choosing. 

2. There needs to be a well-stocked lab with 

expensive drugs and tools. 

3. Finding different DNA markers, like RFLP, 

RAPD, AFLP, SNP, SRP, etc., takes much time, 

effort, and work. 

4. Highly advanced tools, DNA isolation, and the 

study of DNA markers all need skilled workers. 

5. It's hard to do a QTL study with MAS because 

environmental factors and genetic background can 

have cumulative effects. 

6. MAS that uses radioisotopes to name DNA can be 

very bad for your health, especially regarding 

RFLP markers. 

7. In this case, PCR-based markers are better. 

8. In the long run, MAS might not work as well as 

choosing traits directly. 
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