ANTIMICROBIAL SUSCEPTIBILITY PROFILE OF VARIOUS BACTERIA ISOLATED FROM RESPIRATORY TRACT INFECTION

ABDULLAH1, AMIN FU1,2*, NEELMA H1, BASHIR K1, KHAN AA1, BIBI H1, ISRHAD M1, KHAN S1, NAVAZ K1, ULLAH Z2

1Department of Health and Biological Science, Abasyn University Peshawar, KP Pakistan
2Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
3Department of Zoology, University of Peshawar, Peshawar 25000, Pakistan
*Correspondence author email address: faizgnu@gmail.com

(Received, 17th January 2023, Revised 2nd October 2023, Published 4th October 2023)

Abstract The most common and wide types of infections are Respiratory tract infections (RTIs), known for high morbidity and mortality in medicine. This study was conducted to determine the microbial pathogens responsible for respiratory tract infections and their antimicrobial susceptibility pattern. Total 130 sputum and 70 swabs were collected and processed according to standard laboratory procedures Abysn University Peshawar, Pakistan microbiology laboratory. The samples were processed to screen pathogenic bacteria causing respiratory tract infections. Of all samples, the most prevalent bacteria were enterococcus (29.2%) followed S. aureus (27%), S. pneumoniae (14.0%), M. catarhalis (8.4%), K. pneumoniae (7.3%), S. pyogenes (7.9%), and H. Influenza (6.2%). Antibiotics susceptibility profile was done to determine resistance level in isolated species against current antibiotics. It concluded that different bacterial species were responsible for URT and LRT infections and were detected as multi-drug resistance. Further molecular research is needed to identify resistance genes among these species.


Keywords: Antimicrobial, Multi Drug resistance, respiratory tract infection, antibiotics

Introduction
The utmost communal and wide types of infections are included in Respiratory tract infections (RTIs), known for high morbidity and mortality in medicine (Malosh et al., 2018). It is widely accepted that the respiratory tract is one of the most common sites of infection as it interacts directly with the physical environment and is exposed to airborne microbes such as fungi, bacterial species, and viral parasites. Respiratory tract infection (RTIs) includes upper and lower respiratory tract infection and are considered the most significant infectious disease globally facing both developed and developing countries (Kumari et al., 2007). RTI mainly occurs in upper respiratory tract infections (URTIs), presents a higher incidence in children and adults, and has an important economic influence related to lost output in the workplace and physicians' higher antibiotic prescriptions rate (Atia et al., 2018). The most commonly found infections in upper respiratory tract infections (URTIs) are common cold, laryngitis, pharyngitis, otitis media rhinitis, and tonsillitis (Assane et al., 2018). The most common bacterial species causing infection in the upper respiratory tract are Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae, Moraxella catarrhalis and Streptococcus pyogenes (Watson et al., 2006). Lower respiratory tract infections (LRTIs) are among the most common causes of morbidity and mortality worldwide (El-Mahmood et al., 2010; Mishra et al., 2012). In LRTIs the causative agents are mostly gram-negative bacterial pathogens. Numerous studies have been conducted on the LRTIs and reported that a large proportion of gram-negative bacteria are responsible for the infection in current years, especially in hospital-acquired infections and in patients from the community (Dahiya and Purkayastha, 2012; Karaikos and Giamarelou, 2014). It generally happens when pathogenic microbes reach the parenchyma pulmonary airway by crossing the upper respiratory tract’s mechanical and further nonspecific barriers. Infection may occur due to inhaling infectious aerosols, aspiration of oral or gastric contents, or heterogeneous spread (Mahon and Lehman, 2022; Yusuf and Hamid, 2017). The bacterial specimens and symptoms of respiratory diseases diverge with age, gender, season, the type of population at risk, and other factors (Mishra et al.,...
LRTI’s can be designated as infections showing symptoms such as fever, weakness, shortness of breath, coughing fatigue or discomfort, usually for a period ranging from 1-3 weeks. LRTIs include bronchitis and pneumonia commonly (Shrestha et al., 2013). Common intracellular parasites includes virus, fungi and pathogenic bacteria are involved in LRTIs. The most common bacteria are streptococcus pneumoniae, K. pneumonia, and enterococcus species and H. influenza (Uzoamaka et al., 2017). URTIs are also due to the excessive use of antibiotics. Almost 60% of all antibiotics used are for respiratory infections, mainly acute bacterial sinusitis for adults and acute bacterial otitis for children (Jong et al., 2016; Weinstein and Lewis, 2020). The resistance of bacterial species to antibiotics effectiveness is increasing daily and is a serious concern for the globe. The developed countries are going to search for alternative treatments to treat multidrug-resistant microbes, the condition in poor countries may be untreatable (Ozyilmaz et al., 2005). Observing the resistance patterns of microbial pathogens is required to guide the clinician when managing cases requiring antibiotic therapy and monitor the tendency of these types of illness. Bacterial species are well-known to cause prime or superinfection; in most cases, they require targeting (Keith et al., 2010). The community-acquired infection is generally treated with empirical drugs of choice. Antibiotics are considered harmless, this idea leads to the emergence and speedy increase of resistance strains to antimicrobial and has problematic the selection practice of antimicrobial compounds (Uzoamaka et al., 2017). Multidrug-resistant (MDR) bacteria resist currently used antibiotics (Dahiya and Purkayastha, 2012). Bacterial resistance affects the entire globe in managing infectious diseases that result in high morbidity and mortality rates in the community (Organization, 2014).

Materials and Methods

Sample collection

Samples were collected from patients of different hospitals located in Peshawar. The samples include sputum as well as throat swabs. Sterile phlegm containers were used for sputum collection, and a sterile swab for throat samples. The samples were transported to the microbiology laboratory of Abasyn University Peshawar. The samples were inoculated on MacConkey agar (MA), blood agar (BA), and chocolate agar (CHA) media. After inoculation, plates were incubated at 37c for 24 hours.

Bacterial identification

All bacterial isolates were identified using microscopic, morphological, and biochemical techniques.

Morphology identification

After incubation positive agar plates were observed for colony morphology according to CLSI guidelines to give an initial assumption about the kind of bacteria that grow on agar plates (CLSI 2019). The bacteria were preliminary identified based on their colonial morphology, presence or absence of hemolysis on blood agar, fermenter or non-fermenter.

**Microscopically Identification:**

Gram’s staining was done to confirm whether Gram-positive or Gram-negative cocci or bacilli.

**Gram’s Staining Technique**

Thin, uniform smears of specimens were made on glass slides and were allowed to be air dried. Smears were fixed by heat and were allowed to cool. Crystal violet was used to flood on the slides and was allowed to stand for 1 minute, after that water was used to wash the slides. Gram’s iodine was allowed to flood on the slides for 1 minute and was cleaned with water. These slides were depolarized with iodine acetone for 1 minute or differentiator for 10 seconds and were rinsed with water. Counter stain was allowed to flood on the slides for 30 – 60 seconds. These slides were properly rinsed with water, gently blotted, and allowed to be dried. Using oil immersion microscopy, slides were examined. Gram positive organisms gave blue to purple color in microscope. Gram negative organisms gave pink to red color in the microscope. Slides were also examined for bacterial morphology either bacilli, single cell, strept form, cocci, chain form, comma-shaped, letter-shaped, diplococcal etc. (Cobos-Trigueros et al., 2017).

**Biochemical Identification:**

Biochemical analyses were done for the confirmation of bacterial species. In chemical testing, some experiments showed on-the-spot result whereas others had to be incubated for a time. The following tests identify and characterize bacterial species (Hudzicki, 2009). Various essential tests identified the bacterial species include bile solubility and optochin sensitivity test for S.pneumoniae, bacitracin sensitivity test for S. pyogenes, and appropriate biochemical tests including TSI (Triple Sugar Iron), Citrate, MIU (Motility Indole Urea) media, for Enterobacteriacae like Klebsiella pneumoniae. Pure cultures of Moraxella yielding oxidase, catalase test, no growth on nutrient agar at room temperature, failure to ferment glucose, lactose, mannitol and sucrose were considered significant.

**Oxidase Test**

Oxidase test was first performed for all gram negative organisms according to the manufacturer’s procedure. The families of Pseudomonadaceae and Enterobacteriaceae are differentiated by oxidase test. Family Pseudomonadaceae is oxidase positive while Enterobacteriaceais oxidase negative. The bacteria produce cytochrome C oxidase was identified by using oxidase test, an enzyme used in the electron transport chain in bacteria. Tetra methyl-p-phenylenediamine is a reagent that is used in this test. If bacteria contain the enzyme purple color end product is formed. If not present, there is no colorful end product. A few drops of reagent were poured on the sterile paper and mixed with colony of test bacterial isolates, and a smear was formed with the
help of sterile stick. If the organism is oxidase positive, the phenylenediamine in the reagent will be reacted and produce deep purple color (Cobos-Trigueros et al., 2017).

**Indole production Test**
The experimental bacterial isolates were cultured on tryptophan containing media plates. The production of Indole was noticed when Kovac’s or Ehrlich reagent containing 4 (p)-dimethylaminobenzaldehyde reacted with indole and gave a red coloured complex. Kovac’s reagent is suggested instead of Ehrlich’s reagent for detecting indole from enterobacteria.

**Catalase Test**
The catalase test was used primarily to differentiate between the genus *Staphylococcus* and the genus *Streptococcus*. The genus Staphylococcus gave positive catalase reaction, whereas genus *Streptococcus* gave a negative catalase reaction. Catalase enzyme is present in aerobic and facultative anaerobic bacteria containing cytochrome except *Streptococcus* species. The test organism was exposed to hydrogen peroxide and oxygen production was observed. This test was especially important for gram positive bacteria.

1. Immediate bubbling - Positive reaction

**DNase Test**
Tryptophan in DNase Test Agar medium provide nutrients for bacterial growth. Sodium chloride maintain the osmotic balance. For the detection of deoxyribonucleic (DNase) Deoxyribonucleic acid in agar plates. The disks were placed on these inoculated Muller- Hinton agar plates. The turbidity of inoculum was compared to that of the 0.5 McFarland standard using a paper with black lines touching the top of at least 4 to 5 well isolated colonies. This was transferred to the Saline containing tube. To prevent clumping of the cells the inoculum was emulsified carefully inside the tube. It was ensured to pick sufficient bacterial numbers were when cells were picked from more than one colony.

**Inoculum Standardization**
Careful visual examination of agar plates having the test and control strains was done before inoculum preparation. A fresh sub – culture was prepared if cultures appeared mixed. A loop or sterile swab was touched to the top of at least 4 to 5 well isolated colonies. This was transferred to the Saline containing tube. To prevent clumping of the cells the inoculum was emulsified carefully inside the tube. It was ensured to pick sufficient bacterial numbers were when cells were picked from more than one colony.

**Adjustment of Inoculum Standard to a 0.5 McFarland**
The turbidity of inoculum was compared to that of the 0.5 McFarland standard using a paper with black lines or nephelometer. Turbidity of inoculum was adjusted in such a way as to match the turbidity of standard. 0.5 McFarland was approximately equal to 108 CFU/ml. For the accurate assay, a standardized inoculum was essential.

**Inoculation of Muller- Hinton agar plates**
Muller- Hinton agar plates were visually examined before use to ensure that plates have no contamination, approximately 4mm pouring depth, without excessively wet, dry, or cracks. Within 15 minutes of preparing the adjusted inoculum, a sterile cottons swabs dipped into the inoculum. To remove excess inoculum from the swab, the swab was rotated multiple times and pressed firmly above the fluid level.

---

**Table 1: antibiotics used during the research work.**

<table>
<thead>
<tr>
<th>S. no</th>
<th>Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Co-amoxyclav</td>
</tr>
<tr>
<td>2</td>
<td>Penicillin</td>
</tr>
<tr>
<td>3</td>
<td>Cefuroxime</td>
</tr>
<tr>
<td>4</td>
<td>Levofloxacin</td>
</tr>
<tr>
<td>5</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>6</td>
<td>Gentamycin</td>
</tr>
<tr>
<td>7</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>8</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>9</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>10</td>
<td>Cefotaxime</td>
</tr>
</tbody>
</table>

---

For the differentiation of *S. aureus* from *Staphylococci* coagulase test was used. Coagulase enzyme was produced by *S. aureus* which caused the plasma to clot. *S. aureus* produced the enzyme coagulase and caused citrated plasma to clot. There are two types of coagulase enzymes, bound and free coagulase. Bound coagulase was detected by slide coagulase test which absorbed fibrinogen from the plasma. In contrast, free coagulase was detected by tube coagulase test and it caused plasma to clot by converting fibrinogen to fibrin clot. The *S. aureus* causing clumping and resulting in the agglutination of cells. By tube coagulase test both free and bound coagulase can be detected (MacFaddin, 2000).

**Antibiotics susceptibility profile**

**Kirby-Bauer Disk Diffusion Method**
The Kirby-Bauer disk diffusion test is the most common and important antibiotic resistance/susceptibility testing method. For treating a patient, Kirby-Bauer disk diffusion testing results help physicians choose the correct antibiotics to be prescribed. This method used a Small filter disk with a known concentration of antibiotics. The test microorganisms were cultured on Muller- Hinton agar plates. The disks were placed on these inoculated Muller- Hinton agar plates. The antibiotics diffused from the disks into the surrounding agar plates during incubation. In case of susceptibility to the antibiotic, a clear zone was produced and test organism was not grown around the agar. The depth of the agar, the sensitivity of microbe to the antibiotic and the rate of diffusion of the antibiotic through the agar are the main factors responsible for the size of this zone. No zone of inhibition or a relatively small zone was given by microorganisms resistant to that antibiotic (Hudzicki, 2009).
on the inside wall of the tube. The swab was streaked over the whole surface of the Muller- Hinton agar plates. Streaking motion was repeated and the plate was repeated 60°. The inoculation was completed by running the swab around the agar rim. Before applying the antimicrobial disks on the plates excess moisture was absorbed. For excess moisture to be absorbed, the plate lid was left open for 3 – 5 minutes.

**Antimicrobial Disk Dispensing**
The disks were dispensed on the agar surface using a disk dispenser or sterile forceps. After contact with the agar the location of the disk was not changed. To make a strong contact of the disks with the surface of agar the tops of the disks were pressed by a forceps.

**Inoculum Purity Verifying**
A nutrient agar plate was used by streaking the inoculum on the plate to check the purity of the inoculum. To collect inoculum from the tube and to be plated to a nutrient agar plate a sterile 10 µl loop was used. Plates were inverted and incubated for 16 to 18 hours at 37 °C.

**Reading**
Visually the purity of the control plate was checked. In case of mixed growth sub culturing was done to get pure culture. A confluent lawn of the growth was checked. Around some disks single colonies of resistant organisms were observed. When the inoculum was too light and the single colonies did not appear across the plate, the sample was tested again. Physical examination of the zone was done. Inhibition zones diameter was measured.

**Interpretation of results**
CLSI guideline 2019 was used to detect either resistant or sensitive test strain. For interpretation of the inhibition zones confluent lawn of growth and regression lines of a large population of isolates was used.

**Reporting**
Results were reported as either Susceptible (S), Intermediate (I), or Resistant (R) following interpretation according to the CLSI guidelines (CLSI, 2019). At last the percentage of sensitivity and resistant pattern of different antibiotics against different pathogens was calculated.

**Results**
The study designed to examine the bacterial species in respiratory tract infection followed by their identification and checked the antibiotic susceptibility profile of isolated bacteria. In the present study total 200 sputum and throat swabs were collected from different hospitals in Peshawar city. Specimens were investigated for the presence of pathogenic bacteria. Results revealed that all specimens showed bacterial growth on media plates.

**Table: 2 Frequency distribution of samples from various hospitals.**

<table>
<thead>
<tr>
<th>S.NO</th>
<th>Location</th>
<th>Sputum samples</th>
<th>Throat swab</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LRH</td>
<td>40</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>Alkhidmat Hospital</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>KTH</td>
<td>60</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

**Figure: 1 Frequency distribution of samples from various hospitals.**
In this study total 130 sputum samples for Lower respiratory tract and 70 throat swabs for upper respiratory tract infections were analyzed for presence of bacterial pathogens.

**Figure: 2 frequency distributions of sputum and throat swabs.**
Bacterial isolates were then processed for identification. Isolated bacteria were identified by morphologically, microscopically and biochemical testing. The bacteria isolates in the URTIs swabs and LRTIs sputum were: enterococcus (29.3%), S. aureus (27.4%), S. pneumoniae (14.0%), M. catarrhalis (8.4%). K. pneumoniae (7.3%), S. pyogenes (7.9%), H. Influenza (6.1%).
Table: 3 Frequency distribution of bacteria from URTIs and LRTIs

<table>
<thead>
<tr>
<th>Bacterial isolates</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterococcus</td>
<td>52</td>
<td>29.2</td>
<td>29.2</td>
</tr>
<tr>
<td>H. influenza</td>
<td>11</td>
<td>6.2</td>
<td>35.4</td>
</tr>
<tr>
<td>K. pneumonia</td>
<td>13</td>
<td>7.3</td>
<td>42.7</td>
</tr>
<tr>
<td>M. catarhalis</td>
<td>15</td>
<td>8.4</td>
<td>51.1</td>
</tr>
<tr>
<td>S. aureus</td>
<td>48</td>
<td>27.0</td>
<td>78.1</td>
</tr>
<tr>
<td>S. pneumonia</td>
<td>25</td>
<td>14.0</td>
<td>92.1</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>14</td>
<td>7.9</td>
<td>100.0</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>178</strong></td>
<td><strong>100.0</strong></td>
<td></td>
</tr>
</tbody>
</table>

During current study different antibiotics were checked against the isolated bacterial species. The bacterial strains were evaluated as resistant and sensitive by measuring the inhibitory zones around antibiotics disks. All the bacterial isolates showed higher level of resistance against ampicillin and penicillin.

Table: 4 Antibiotic sensitivity pattern of isolated bacterial

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Streptococcus pneumonia</th>
<th>Klebsiella Pneumonia</th>
<th>Streptococcus pyogenes</th>
<th>Moraxella catarhalis</th>
<th>Hemophilus influenza</th>
<th>Enterococcus Spp</th>
<th>Staph aureus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>99</td>
<td>1%</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Penicillin</td>
<td>98</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>100</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>Co-amoxiclav</td>
<td>85</td>
<td>15</td>
<td>98</td>
<td>2</td>
<td>81</td>
<td>19</td>
<td>98</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>78</td>
<td>22</td>
<td>85</td>
<td>15</td>
<td>82</td>
<td>18</td>
<td>86</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>82</td>
<td>18</td>
<td>90</td>
<td>10</td>
<td>87</td>
<td>13</td>
<td>89</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>25</td>
<td>75</td>
<td>55</td>
<td>45</td>
<td>40</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>74</td>
<td>26</td>
<td>---</td>
<td>---</td>
<td>88</td>
<td>12</td>
<td>---</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>18</td>
<td>82</td>
<td>53</td>
<td>47</td>
<td>16</td>
<td>84</td>
<td>60</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>30</td>
<td>70</td>
<td>65</td>
<td>35</td>
<td>45</td>
<td>55</td>
<td>67</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>56</td>
<td>44</td>
<td>82</td>
<td>18</td>
<td>54</td>
<td>46</td>
<td>85</td>
</tr>
</tbody>
</table>

Antibiotics sensitivity pattern of S. pneumoniae: *P. pneumoniae* showed 99% resistance and 1% sensitive to Ampicillin followed by Penicillin against 98% resistance and 2% sensitive, 85 resistance and 15% sensitive to Co. amoxiclav, 82% resistance and 18% sensitive to Cefuroxime, 78% resistant and 22% sensitive to Cefotaxime, 74% resistant and 26% sensitive to Erythromycin, 56% resistant and 44% sensitive to Tetracycline, 30% resistant and 70% sensitive to Ciprofloxacin, 25% resistant and 75% sensitive to Levofloxacin, 18% resistance and 82% sensitive to Gentamycin.

Antibiotics sensitivity pattern of K. pneumoniae: *K. pneumoniae* was observed 100% resistance and 0% sensitive to Ampicillin followed by Co.amoxiclav against 98% resistance and 2% sensitive, 85 resistance and 15% sensitive to Cefotaxime, 90% resistance and 10% sensitive to Cefuroxime, 85% resistant and 15% sensitive to Cefotixime, 74% resistant and 26% sensitive to Erythromycin, 82% resistant and 18% sensitive to Ciprofloxacin, 65% resistant and 35% sensitive to Gentamycin.

![Figure 3 Antibiotics sensitivity pattern of S. pneumoniae](Image)

![Figure 4 Antibiotics sensitivity pattern of K. pneumoniae](Image)
Antibiotics sensitivity pattern of S. pyogenes:
Results showed that S. pyogenes was observed 100% resistance and 0% sensitive to Ampicillin followed by Penicillin against 100% resistance and 0% sensitive, 88% resistance and 12% sensitive to Erythromycin, 87% resistance and 13% sensitive to Cefuroxime, 82% resistant and 18% sensitive to Cefotixime, 81% resistant and 19% sensitive to Co-amoxiclav, 54% resistant and 46% sensitive to Tetracycline, 45% resistant and 55% sensitive to Ciprofloxacin, 40% resistant and 60% sensitive to Levofloxacin, 53% resistance and 47% sensitive to Gentamycin.

Figure: 5 Antibiotics sensitivity pattern of S. pyogenes

Antibiotics sensitivity pattern of M. catarrhalis:
M. catarrhalis exhibited 100% resistance and 0% sensitivity against Ampicillin followed by 98% resistance and 2% sensitivity against Co. amoxiclav, Cefuroxime 89% resistance and 11% sensitive, Cefotixime 86% resistance, 85% resistance and 15% susceptible to tetracycline and 16% sensitive, 60% resistance and 40% sensitive to Gentamycin.

Figure: 6 Antibiotics sensitivity pattern of M. catarrhalis

Antibiotics sensitivity pattern of H. influenza:
H. influenza was observed 100% resistance and 0% sensitive to Ampicillin followed by Co. amoxiclav 98% resistance and 2% sensitive, Cefuroxime 90% resistant and 10% sensitive, 87% resistant and 13% sensitive to Tetracycline. While against Cefotixime 80% resistance and 20% sensitive. The bacteria H. influenza susceptible to Levofloxacin 85% and 15% resistance followed by Gentamycin 20% resistance.

Figure: 7 Antibiotics sensitivity pattern of H. influenza

Antibiotics sensitivity pattern of Enterococcus Species:
Ampicillin was noted 99% resistance and 1% sensitive to Enterococcus Species followed by Penicillin against 97% resistance and 3% sensitive, 86 resistance and 16% sensitive to Cefuroxime, 79% resistant and 19% sensitive to Cefotixime, 78% resistant and 22% susceptible Co-amoxiclav, 54% resistant and 46% sensitive to Tetracycline, 56% resistant and 44% sensitive to Tetracycline, 20% resistant and 80% sensitive to Ciprofloxacin, 20% resistant and 80% sensitive to Gentamycin, 16% resistance and 84% sensitive to Levofloxacin.

Figure: 8 Antibiotics sensitivity pattern of Enterococcus Species

Antibiotics sensitivity pattern of S. aureus:
Ampicillin was observed 100% resistance and 0% sensitive to S. aureus followed by Penicillin against 98% resistance and 2% sensitive, 80 resistance and 20% sensitive to Cefuroxime, 78% resistant and 22% sensitive to Co-amoxiclav, 76% resistant and 24% sensitive to Cefotixime, 69% resistant and 31% sensitive to Erythromycin, 56% resistant and 44% sensitive to Tetracycline, 18% resistant and 82%
sensitive to Ciprofloxacin, 16% resistant and 84% sensitive to Levofloxacin and 16% resistance and 84% sensitive to Gentamycin.

**Figure: 9 Antibiotics sensitivity pattern of S. aureus**

The average antibiotics resistance were: ampicillin was 99.7% resistance to all antibiotics, followed by penicillin 98.2%, Co-amoxiclav 88%, Cefuroxime 86%, Cefotixime 82%, Tetracycline 67.7%, Ciprofloxacin 50.4%, Levofloxacin 46.2%, Erythromycin 43% and Gentamycin 37%.  

**Discussion**

In the current study, different bacterial species were investigated in respiratory tract infection followed by their identification and checked the antibiotic susceptibility profile of isolated bacteria. Nowadays the resistance produced by microbes (especially bacteria) is one of the foremost health issues in the developing world. An alternate therapy must be cost effective to stop this drug resistance over and above (Keith et al., 2010; Shrestha et al., 2013). Our study comprises 130 sputum and 70 throat swabs investigated for screening pathogenic bacteria. The bacterial isolates from the swabs of the upper respiratory tract were S. aureus (42.5%) followed by S. pyogenes (20.3%), S. pneumoniae (16.5%), K. pneumoniae (11.5%), M. catarrhalis (8.7%). While bacteria in the sputum of the lower respiratory tract were coliforms (40.4%), P. aeruginosa (29.4%) S. pneumoniae (11.5%), H. Influenza (6.5%), M. catarrhalis (4.6%). Our result is in comparison with the Atia et al. (2018), who also investigated the pathogenic bacteria of URTIs. Of 530 processed samples, 80.5% showed positivity, wherein pathogenic bacteria were identified in 83.7% of sputum samples and 56.5% of throat swabs. Most frequent bacterial specie was S. pneumoniae (48%), followed by P. aeruginosa (23%), S. aureus (13%), Enterobacter (8%), C. freundil (5%), and latest with Klebsiella (3%). In our study 130 sputum from LRTIs were analyzed and noted bacterial species in sputum were coliforms (40.4%), P. aeruginosa (29.4%) S. pneumoniae (11.5%), H. Influenza (6.5%) M. catarrhalis (4.6%). In contrast to the result described by Amarasinghe et al. (2018) who presented similar results showing 29.4% positive results for pathogenic bacterial organisms. Coliforms, 43.6%, and P. aeruginosa 29% were the most commonly isolated bacteria, followed by Moraxella 11.6%, H. influenzae (n = 23, 5.7%), and S. pneumoniae, 4.4% (Agmy et al., 2013). Among the pathogenic bacteria colonized in the respiratory tract, MDR is a severe problem, particularly those causing hospital-acquired infections. When different antibiotics were tested against isolated bacterial pathogens it was found that S. pneumonia resistance to Ampicillin, Penicillin, Co-amoxiclav, Cefotixime, Cefuroxime, 99%, 98%, 85%, 78%, 82% respectively, while low resistivity were determined against Ciprofloxacin 30%, Levofloxacin 25% and Gentamycin 18%. A similar study was conducted by Dutta and his colleagues, who reported that the isolates of S. pneumonia also exhibited higher susceptibility to cefuroxime (93.7%) (Dutta et al., 2017; Uzoamaka et al., 2017). The representation of the susceptibility of Penicillin-G, Ciprofloxacin, Tetracycline, and Erythromycin amounted 14.17%, 14.66%, 13.92%, and 8.16% respectively (Karaiskos and Giannarelli, 2014; Karcic et al., 2015). In our study K. pneumoniae was observed 100% resistance to Ampicillin and penicillin followed by Co-Amoxiclav 98%, Cefotixime 85%, Cefuroxime 90%, Ciprofloxacin and Gentamycin 78% and 75% respectively. The current findings were compared with the work done by Malik et al., (2019), in which S. pneumoniae was 66.7% resistant to penicillin and 100% sensitive to Cefuroxime. Agmy and his colleagues explained that antimicrobial resistance among S. pneumonia has risen dramatically over the past years. By the early 1990s, penicillin-resistant clones of S. pneumoniae spread rapidly across the world (Agmy et al., 2013). In our investigation S. pyogenes were noted in higher resistance 100% against Ampicillin and Penicillin followed by Cefuroxime, Cefotixime, and Co-amoxiclav 87%, 82% and 81% respectively. Results were compared with the study of Dutta et al., (2017) investigated the higher sensitivity of S. pyogenes against cefuroxime (90%), levofloxacin (90%), gentamycin (80%) followed by amoxyclav (75%) and penicillin (70%). H. influenza was noted in maximum resistance to levofloxacine15% followed by Gentamycin 20% and Ciprofloxacin 45% While higher resistance to Ampicillin and penicillin. Wang and his colleagues gave a similar result that resistance rates of the HI isolates to cepuroxime, Cefotixime were 31.2%, 5.9%, respectively and suggested that the main mechanism used by H. Influenza to resist ampicillin is the production of β-lactamase to break antibiotics (Wang et al., 2019).

**Conclusion**

In the study, 130 sputum and 70 throat swabs were tested for respiratory bacterial pathogens. The samples were positive for different bacterial pathogens. Positive respiratory samples, enterococcus...
showed higher frequency (29.3%) followed by S. aureus (27.4%), S. pneumoniae (14.0%), and M. catarrhalis (8.4%). K. pneumoniae (7.3%), S. pyogenes (7.9%), H. influenza (6.1%) showed lowest frequency. Antibiotics susceptibility profile was also done to determine resistance levels in isolated species against current antibiotics. Antibiotics susceptibility profile was done to determine resistance level in isolated species against current antibiotics. Few antibiotics were effective, while others were ineffective, and multi-drug resistance bacteria were detected. Further molecular research is needed to identify resistance genes among these species.

**Declarations**

**Conflict of interest**
The authors have no conflict of interest

**Data availability statement**
All data generated or analyzed during the study are in the manuscript.

**Ethics approval and consent to participate**
Not applicable

**Funding**
Not applicable

**Acknowledgement**
The authors are obliged to the laboratory staff of selected Hospitals in Peshawar.

**References**


Weinstein, M. P., and Lewis, J. S. (2020). The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing:

Declaraton

Data Availability statement

All data generated or analyzed during the study have been included in the manuscript.

Consent for publication

Not applicable

Funding

There were no sources providing support, for this research.

Conflict of interest

The authors assure that there were no financial relationships involved that could be perceived as a conflict of interest.

Acknowledgment

The authors are very thankful to the Abasyn University Peshawar, Khyber Pakhtunkhwa.

Author, Disclosure Statement

Ethics approval and consent to participate

The study permitted by the Ethical Committee of Abasyn University Peshawar and written informed consent was obtained from all the patients participated in the study.

Author Contributions

Abdullah did the experiments and wrote the manuscript. FUA, NH and BK conceived the study and design, AAK, BH and IM, SK, KN, ZU reviewed the manuscript. All the authors participated in the experimentation & optimizations.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2023