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Abstract: Legumes are an important family of flowering plants, comprising more than 13,000 species and 600 genera. 

The term "pulses" refers to dried seed crops cultivated for food, rather than oil extraction. Lentils, chickpeas, cowpeas, 

mung beans, black grams, and pigeon peas are examples of such pulses, as they are highly nutritious and widely 

consumed by humans. Also, they can fix nitrogen in the soil with the help of bacteria that live in harmony with them. 

This makes crop cycles less dependent on chemical fertilizers. Before new genotypes were used, the traditional ways 

of raising pulses took a long time and were hard to do. So, alternatives based on biotechnology can be helpful in this 

area. Researchers are investigating the efficacy of tissue culture, regeneration techniques, gene transfer, and 

transformation methods in pulse crops. The aim is to determine how these approaches can be utilized to improve the 

production and quality of pulse crops. Also discussed are anther, microspore, embryo, and ovary growth and their 

possible uses in pulses. The study concludes that in vitro tissue culture is a useful tool for breeding programs of 

leguminous pulses. It can help make better legume crop varieties, leading to higher yields and better quality. 
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Introduction  

The 20,000 species in the Fabaceae family make it the 

third-biggest plant family in the entire country and the 

second most important source of food and protein for 

humans (Weeden 2007; Cannon et al. 2009). The 

FAO recognizes 11 "pulse crops" in the 

Leguminaceae family, such as peas, beans, chickpeas, 

lupins, lentils, cowpeas, mung beans, black grams, 

and pigeon peas, which are grown only for their grains 

(Akibode and Maredia, 2011). "Pulse" comes from 

the Latin word "puls," which means thick soup or 

mush. More and more people realize that pulses are 

good for your health because they are a cheap source 

of proteins, important minerals, vitamins, secondary 

metabolites like flavonoids, and other nutrients 

(Cannon et al., 2009). Pulse crops, such as Pisum 

sativum L., Vicia faba L., Lens culinaris Medik, 

Phaseolus vulgaris L., Lupinus sp., and Cicer 

arietinum L. have been heavily researched to increase 

yield and quality (Pérez de la Vega et al., 2011; Torres 

et al., 2011; Gaur et al., 2012). The FAO states that 

the area of pulse crops has grown from 64 million 

hectares in 1961 to 86 million hectares in 2014. Other 

types of pulse crops, such as cowpeas, mung beans, 

black grams, and pigeon peas, are mostly cultivated in 

warm climates (Smkal et al., 2015). Breeding of fava 

beans is conducted similarly to other self-pollinating 

species due to its self-pollinating nature. In 

Conventional breeding programs, the first step is to 

find and collect a good genetic variety for the traits 

that need to be improved. 

Then, breeders create new kinds of variation by 

crossing different genetic resources and using the 

offspring to make new inbred lines. But this process 

often gets stuck because there aren't enough genes. 

This is because pre-breeding efforts don't take 

advantage of the diversity of wild species. Based on 

Harlan and de Wet's classical definition from 1971, 

legumes are put into genetic pools to increase the 

genetic base and add desired traits. The nitrogen 

dynamics of six legume species (Pisum sativum, 

Cajanus cajan, Cicer arietinum, Vigna unguiculata, 

Lens culinaris, and Lupinus sp.) and two species of 

Vigna (Vigna mungo and Vigna radiata) were 

investigated. The results showed that the six legume 

species and two Vigna species had primary, 

secondary, and tertiary pools. However, Pisum 

sativum and Vigna faba only had primary and 

secondary pools. Because of this, the secondary 

genetic pool can't be used for normal plant breeding. 

Instead, it has to be used with biotechnology. In-vitro 
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technologies might be able to solve some of the 

problems and problems that come with standard ways 

of breeding. Using in-vitro culture methods in 

breeding programs for pulses can be helpful in two 

ways: it can help control genetic variation and speed 

up the normal breeding process. This review examines 

how well in-vitro tissue culture techniques can breed 

pulses and their benefits. Plant breeding has used in-

vitro methods for more than 70 years, and there is a 

lot of literature about them. This review will focus on 

literature from the last ten years. 

Tissue Culture Propagation  

The prospect of being able to study the genetic 

variation in a relatively short period has been provided 

by the process of in vitro vegetative propagation of 

plants, which is conducted in aseptic conditions, as 

documented by Cruz-Cruz et al. (2013). This process 

also allows for the rapid multiplication and production 

of plant material. This type of plant growth includes 

three steps: somatic embryogenesis, the production of 

adventitious shoots, and the production of axillary 

shoots from axillary buds and meristems that already 

exist (Ahmed et al., 2001). Micropropagation, which 

uses existing axillary buds and meristems, makes it 

possible to grow elite cultivars from clones on a big 

scale, which speeds up the breeding process (Deo et 

al., 2010). Unfortunately, most species of legumes 

have autogamy and orthodox seeds. This makes these 

expensive uses not very interesting, so they are rarely 

done. Still, they can be very helpful in saving wild 

germplasm that is threatened by habitat loss, like 

lentils (Sevimay et al., 2005). This is because they can 

provide disease-free material to keep breeding lines 

going, shorten quarantine periods, and quickly 

increase the number of plants collected (Brown et al., 

2014). Espósito et al. (2012) showed for peas that F1 

hybrid clonal propagation can be used to make enough 

F2 populations for breeding programs that need 

crosses that are hard to make. 

Somatic Embryonic Formation 

Somatic embryogenesis is a process that allows for the 

development of haploid or diploid somatic cells into 

various plant species without the need for gamete 

fusion at any stage of embryological development. 

This process has two main steps: inducing 

embryogenesis and expressing the cells made. In 

some cases, there is a callus stage in between, but in 

other cases, the embryo grows straight from a cell or 

tissue. The replication of the same genes present in the 

parent tissue facilitates somatic growth of embryos. 

These embryos are called clones. This method is 

especially helpful for breeding plants because it 

eliminates the need for a root face, which is needed 

for micropropagation using lateral buds and 

organogenesis. Investigations into developing 

somatic embryogenesis systems for legumes have 

been extensively studied and reviewed 

(Venkatachalam et al., 2003; Pratap et al., 2010). But 

because it is hard to grow back leguminous species in 

a lab, this technology isn't used as much as it could be. 

This makes the development of successful methods 

one of the most important parts of somatic 

embryogenesis. Recently, Ochatt and Revilla (2016) 

talked about some of the problems with development 

and suggested ways to solve them. Bobkov (2014) and 

Nafie et al. (2013) looked at different ways to grow 

cells in a lab to increase the number of spontaneous 

embryos that grow. During the induction phase, 

Bobkov (2014) used high temperatures to stress the 

plants and a low concentration of growth regulators. 

This led to calluses with structures like embryos that 

could be turned back into plants. On the other hand, 

Nafie et al. (2013) found that somatic egg production 

was best with MS medium that had 1.5 mg L-1 of 2, 

4-D, and 0.1 mg L-1 of 24-Epibrassinolide added to 

it. Culture media must have the right amounts of 

growth regulator substances (GRS) like auxins, 

cytokinins, abscisic acid, and gibberellins, as well as 

the elements plants need to grow and develop. 

Maturation results from the storage of carbs, lipids, 

and proteins, the drying out of the embryo, and the 

slowing down cellular respiration (Deo et al., 2010; 

Ochatt and Revilla, 2016). This process is controlled 

by how many different signaling pathways work 

together. These pathways combine genetic, 

biochemical, and hormonal signals. Sugars, especially 

sucrose, are important parts of the signaling system 

that starts the transition phase (Ochatt, 2015; Ochatt 

et al., 2010). Cabrera-Ponce et al. (2014) showed that 

using sucrose to lower the water potential of the 

growth medium is a major way to help embryos grow 

and develop while being grown in a lab. This method 

lets you make a lot of new and high-quality types in a 

short amount of time. However, unlike 

micropropagation, it is expensive and not very useful 

for breeding pulses. Still, it is a great method for 

transgenesis and causing mutations because somatic 

embryo culture usually starts with a single cell and 

doesn't allow chimaeras to form. 

Organogenesis 

Organogenesis is making shoots and roots from an 

explant (tissue) without the appearance of a callus. If, 

however, a callus-forming phase comes before 

organogenesis, this is called indirect organogenesis. 

This process generally starts by culturing the explant 

on a callus-inducing medium (CIM) high in auxin. 

The explant is then placed on a shoot-inducing 

medium (SIM) or a root-inducing medium (RIM) of a 

predetermined auxin-to-cytokinin ratio (Ochatt et al., 

2010). Certain legumes, on the other hand, have a low 

rate of root production when they grow back, and they 

tend to lose plants during acclimatization and 

hardening before being put in the soil. To solve this 

problem, Sarker et al. (2012) made a different way for 

L. culinaris Medik. to grow new roots that didn't 

involve root growth in a lab. Also, some members of 

the Fabeae tribe have been able to get around this 

problem by using in vitro and in vivo grafts (Atif et 

al. 2013). 

Genetic Mutation  
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Somaclonal variation, also called a spontaneous 

mutation, can happen when micropropagation and/or 

renewal processes are repeated. This can lead to plants 

that are not true-to-type. This variation can come from 

either the genotype or the phenotype, so it can be 

genetic or epigenetic. This kind of variation is usually 

not what you want in clonal propagation or plant 

transformation studies. Still, Schlichting and Wund 

(2014) found that it can be very helpful for breeders 

to find possible somaclonal types in callus-

regenerated plants when they are still young. Khatun 

et al. (2003) say that explant types, growth regulators, 

genotypes, nutrient makeup, and hormone 

supplementation are all important factors in 

somaclonal variation. Elmaghrabi et al. (2013) 

suggested that some clones selected by either 

pathogens or natural forces can be beneficial. To 

demonstrate this, Thiagarajan et al. (2013) examined 

callus regeneration in various salt concentrations and 

found that regeneration decreased as the salt content 

increased. This research demonstrated the potential 

for selecting clones with useful traits like salt 

tolerance. Somaclonal variation is an interesting 

source of variety that breeders can use (Soniya et al., 

2001). 

Fusion of Somatic Cells 

Conventional breeding only works for closely related 

species. It doesn't work for species that aren't closely 

related or that can't reproduce with each other. 

Protoplast fusion technology, on the other hand, gives 

a new point of view by allowing breeding between 

different species. This technology lets two protoplasts 

with different genes join to make heterokaryons, 

parasexual hybrid protoplasts. Symmetric somatic 

hybrids are composed of genetic material from two 

different organisms, while asymmetric somatic 

hybrids are composed of genetic material from two 

strains of the same species. Nucleo-cytoplasmic 

hybrids, however, comprise a nucleus derived from 

one parent and either the cytoplasmic genome of the 

other parent or a mix of the two. Ikeda et al. (2011) 

say that one important way these crosses can be used 

is to make male-sterile lines. Ochatt et al. (2005) and 

Ochatt et al. (2007) point out that methods for 

isolating and fusing protoplasts in grain legumes are 

not well studied, but there have been some amazing 

successes. For example, Durieu and Ochatt (2000) 

devised a plan for fusing peas (P. sativum L.) from 

different species. 

Double haploid 

Most of the time, the word "haploid sporophyte" 

refers to sporophytes with the same number of 

chromosomes as gametes (Palmer et al., 2005; 

Bhojwani et al., 2010). Double haploids (DHs) are 

increasingly used in plant breeding due to their 

homozygosity and uniformity (Germanà et al., 2011; 

Lulsdorf et al., 2011). By doubling the haploid 

complement, the number of chromosomes can be 

returned to normal, which is beneficial for both 

cultivar and hybrid crop growth. In addition, 

recombinant inbred lines (RILs) derived from DH 

lines is gaining popularity due to its applicability in 

identifying recessive, dominant, and harmful genes in 

quantitative genetics studies (Szarejko and Forster, 

2007). Somatic hybridization can also be done with 

DH, which means that ploidy levels can be changed, 

and cross-incompatibility hurdles can be avoided 

(Germanà, 2011). 

For example, wide hybridization with chromosome 

deletion, gynogenesis, and androgenesis (anther and 

microspore culture) can make haploid plants (Khush 

and Virmani 1996). Most people use the second one. 

Recently, a technology-based method called 

"centromere-mediated genome elimination" (Ravi 

and Chan 2010, Comai 2014, Tek et al. 2015) has 

been created to make DH in different species. 

Gynogenesis, also known as the in vitro generation of 

maternal haploids, is a way to make haploid embryos 

from a female gametophyte. It can be done by 

growing in a lab ovule, with placentas attached, 

ovaries, or whole flower buds that haven't been 

fertilized (Murovec et al., 2012). Genotype, growth 

conditions, microspore developmental stage, flower 

bud pretreatment, abiotic stress pre-treatments (e.g. 

centrifugation, electroporation, and osmotic shock), 

light intensity, photoperiod, temperature, nutrition, 

and season of donor plant growth have all been 

identified as factors influencing the efficacy of 

microspore culture (Germanà 2006; Hosp et al. 2007; 

Ribalta). Crosser et al. (2006) and Ochatt et al. (2009) 

demonstrated that the utilization of uni-nucleate 

microspores is a suitable method for initiating haploid 

cultures in peas (Pisum sativum). This is true for all 

races. In chickpeas, the best reaction came from uni-

nucleate microspores (Grewal et al., 2009), especially 

when the buds were 2–3 mm long, and the anthers 

were light yellow and see-through (Panchangam et al., 

2014). (Kozak et al., 2012) found that the best time 

for androgenesis to happen in lupin (Lupinus 

angustifolius L.) is when the buds are 5–6 mm (from 

the middle section of the inflorescence). 

Culturing Flowers in Vitro 

In vitro flowering and seed setting is a good way to 

speed up the creation of rare and valuable genotypes 

when there aren't enough seeds or to ensure that new 

traits stay fixed when renewed shoots are hard to root 

or establish. Also, the change from the vegetative to 

the reproductive phase can be controlled by changing 

physical and chemical factors and internal and 

external triggers. Unfortunately, growing lentils in a 

lab has been hard, especially when it comes to finding 

a good way to make roots growSarker et al. (2012) 

developed a method for in vitro flowering and pod 

formation directly from shoots regenerated in vitro by 

using two types of microsperma and two types of 

explants (cotyledonary nodes and severed embryos 

with one cotyledon attached). Das et al. (2012) also 

saw that shoots that had been changed with 

Agrobacterium grew three flowers in a lab and alive 

and healthy pods after two to three weeks. Also, 
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Ochatt et al. (2002) used this in vitro flowering 

method to speed up breeding, getting up to seven 

generations of peas, three generations of grass peas, 

and four generations of Bambara groundnuts per year. 

Ribalta et al. (2014) improved this protocol across a 

range of genotypes by using an anti-gibberellin 

(Flurprimidol) to reduce the length of the internodes 

and control plant growth. Ribalta et al. (2016) showed 

that early flowering and knowing the exact time of 

embryo physiological maturity made it easier for 

immature seeds to germinate, which shortened the 

pea's life cycle even more. 

Transfer of Genes in Plants 

The goal of plant transformation is to make a full plant 

again. This is done by delivering, integrating, and 

expressing foreign genes in plant cells. This is 

required when the desired genes aren't found in a 

certain species because they don't get along with each 

other. So far, gene delivery systems have been 

classified into two distinct categories: direct gene 

transfer and Agrobacterium-mediated gene transfer. 

Applying physical or chemical forces to transfer 

genes directly into plant protoplasts, cells, and tissues 

has been explored as a viable option for gene transfer. 

An alternative approach is agrobacterium-mediated 

gene transfer, which employs A. tumefaciens as a 

vector to transfer foreign genes into the host genome. 

The use of transgenic plants to introduce novel 

genotypes with beneficial traits has been widely 

explored (Wang et al. 2005; Sahebi et al. 2014; 

Ziemienowicz 2013). These genetically modified 

plants have been designed to resist herbicides, insect 

pests, and virus diseases, improve plant nutrition, and 

reduce the effects of dangerous agrochemicals, 

ultimately increasing yield components. Transgenic 

crops resistant to insects are the second most popular 

feature to be sold after transgenic herbicide resistance 

(James, 2013). Numerous varieties of legumes have 

been shown to contain transgenic plants (Atif et al. 

2013). Direct gene transfer is the most effective 

technique for organisms, not hosts of Agrobacterium. 

For instance, Peas (P. sativum L.) are one of the most 

vulnerable grain legumes to salt stress. Ali et al. 

(2015) employed transgenic pea plants 

overexpressing the Na+/H+ gene from Arabidopsis 

thaliana to increase salt stress resistance in peas. 

Negawo (2015) enhanced pea insect resistance via 

Agrobacterium-mediated transformation. For two 

microsperma kinds of lentils (L. culinaris Medik.), a 

transformation mechanism was also created by 

Subroto et al. (2012), yielding transgenic shoots with 

an overall frequency of 1.009%. Bermejo et al. (2012) 

achieved a success rate of 7% in the production of 

transgenic plants. Moreover, Bermejo (2015) 

developed an efficient and repeatable in vitro 

regeneration strategy for shoot regeneration from 

cotyledonary node explants. Transgenesis and cis-

genesis (The introduction of new genetic material into 

a species can be achieved by adding genes from the 

same species or closely related species capable of 

interbreeding. This can bring about genetic diversity 

within the population and ultimately lead to the 

evolution of new traits). Might speed up the breeding 

process by skipping many generations in the 

introduction of genes, yet public acceptance of 

transgenic plants may be unequal. 

Perspectives and summary  

Undoubtedly, in vitro culture methods are useful for 

breeding pulses. However, pulses are known to be 

stubborn. Its goal is to look at how in vitro tissue 

culture methods are used for breeding now and figure 

out how they could improve the quality and yield of 

leguminous pulse crops. The study will also examine 

the pros and cons of in vitro tissue culture and how it 

might affect breeding programs in the future. The 

results of this study will give us important information 

about how in vitro tissue culture can be used to 

improve the quality and output of leguminous pulse 

crops. It will look at how in vitro tissue culture 

methods are currently used for breeding and how they 

could be used to improve the quality and yield of 

leguminous pulse crops. We will talk about the pros 

and cons of in vitro tissue growth and what it means 

for future breeding programs. The study's results will 

give us important information about using in vitro 

tissue culture and how it might help improve the 

quality and yield of leguminous pulse crops. Pulse 

breeders have found that only cheap and easy-to-use 

methods work best for breeding programs. As a result, 

in vitro flowering and in vitro embryo growth are the 

most useful and practical methods used today. The 

DH method, which has been used a lot with some 

crops, can't be used now because no one knows how 

to help plants grow back. Still, it has potential and 

should be combined with phenomics and genetics to 

speed up the development of new cultivars, save 

money on plant breeding, and shorten the time it takes 

to breed pulses. To this end, more research should be 

done on these technologies, and the possible risks of 

using them should be carefully thought through before 

they are used on a large scale. Ducts necessitate 

adherence to the regulations and standards of each 

country to ensure their successful marketability. 
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